Software Journal: Theory and Applications 4, 2019

DOI: 10.15827/2311-6749.19.4.2
Display Transmitter Link Controller Design Technology for Linux OS

K.V. Pugin 1, Programmer, rilian@niisi.ras.ru

K.A. Mamrosenko !, Ph.D. (Engineering), Head of Department, mamrosenko_k@niisi.ras.ru
V.N. Reshetnikov !, Dr.Sc. (Physics and Mathematics), Professor, Chief Researcher,
ron@niisi.ras.ru

1 Center of visualization and satellite information technologies SRISA RAS, Moscow, Russia,
117218

The main purpose of the paper is to develop a driver architecture for a display transmitter link controller
when the controller has its own registers and memory. The developed architecture should reduce update changes
in the implementation code and should not require any special tools or methods to develop its implementations.
The paper analyzes publicly accessible DRM subsystem-based drivers and identifies two main architecture
types, which serve as a basis for the majority of open source drivers. It also analyzes the strengths and weak-
nesses of the architecture types to achieve the above purpose. The identified architecture types were used
to build a new architecture that has the strengths of both types, which allows achieving the purpose.

The paper also describes the developed driver debugging methods, which are based on the architecture under
analysis and take into account the possibility of errors in the hardware, absence or insufficiency of controller
documentation and incomplete emulation of the devices being developed. The results were evaluated during
development of the DisplayPort driver for a perspective controller, and the driver was tested together with
a prototype device and a monitor supporting the DisplayPort 1.1 standard.

The results of this paper can be used to create new transmitter link controller drivers for Unix-like systems
both when a production state controller exists and when doing parallel development of a new controller and
a driver for it.

Keywords: Linux, driver, architecture, DisplayPort, embedded systems.

Currently, graphic display units are developing at a high pace: new displays with a resolution over
1920x1080 are appearing, refresh rate and chrominance frequency are growing — some modern displays have
a refresh rate of 120 HZ and more than 8 bit per a color channel already. This makes the use of new standards
in development of display interface controllers allowing such use of the communication channel between
a display and a display controller a relevant issue. Data transmission between a display and a display controller
unit often requires a separate display transmitter link controller (DTLC) to be created, which will complement
the display controller by converting the output in the form required by the display. To be able to transmit high-
resolution video at a rate of 1 Gbit/s and higher, such a device requires complex program control (device-
specific), as opposed to earlier protocols, which do not require such control, or where common control method
standards were developed long ago. In the context of this article, such DTLCs are called complex DTLCs. As the
number of tasks with the use of high-resolution video is growing, new approaches to the development of drivers
for such (complex) devices are needed [1].

When DTLC drivers are developed in parallel with the development or upgrade of the device, the following
problems are encountered:

1. Unsynced development of the driver and the controller causes delays in the development, as it becomes
difficult to distinguish between errors attributable to the controller and those attributable to the driver.

2. Absence or insufficiency of documents in case of a partially closed source code cause errors in the
development of the driver and the above described problem.

3. The necessity to adjust the driver architecture to the controller’s features, as for various reasons, in some
embedded controllers the standard can be implemented only partially.

To address these problems, several approaches, such as creation of a DSL (Domain Specific Language) [2],
creation of a driver generator based on XML description [3] and use of verifiers [4], are employed. Such ap-
proaches have their strengths, but they also have weak points, the most important of which are the impossibility
to use methods applied to partially closed source code of the controller and indirect costs related to development
of auxiliary tools. This article offers a new driver architecture for parallel development (or upgrade) of the con-
troller, which allows minimization of indirect costs in the process of implementation (does not require develop-
ment of new DSL or new verifiers) and does not require a completely open source code of the controller. To im-
plement the architecture, Linux OS was chosen as the most popular OS in embedded systems, while the devel-
opment of modern drivers is most relevant for embedded systems. [5]

10

Software Journal: Theory and Applications 4, 2019

Research Methods

Approaches to Development of Display Controller Drivers Using Linux OS as an Example.
There are several known approaches related to the use of some known graphic subsystem tools that are em-
ployed in development of DTLC drivers for Linux. We will look at the most popular of them:

1. DRM (Kernel Mode Setting). The display transmitter link interface is a part of the Direct Rendering
Management (DRM) infrastructure. Looking at the DRM subsystem as a software model of a real output device,
all transmitter link interfaces refer to the connector type, as they connect a display and the display output
controller, where the display is usually the connected element [6]. However, the connector type implementation
cannot control power supply to the device and set the required mode, therefore complex DTLC drivers are most
commonly implemented as a bridge + connector bunch, or much less often as an encoder + connector bunch.
In contrast to the option with the use of a bridge, the second option does not refer to an external model, being
though realizable in practice [6].

2. User Mode Setting (UMS) or an implementation with setting modes and interfacing with the hardware
inside an X server. Problems in the implementation and employment of the UMS were identified in 2006 [7],
after which drivers for transmitter link controllers were not actually developed using this approach.

3. FrameBuffer device (fbdev). This kernel interface preceded the DRM KMS unit and was most
widespread till 2008-2009, when the first KMS version was taken into the kernel. The fbdev interface did not
provide an implementation with setting up modes in the kernel, thus requiring the UMS implementation, which
caused the above-mentioned problems, and after the KMS appeared, drivers for transmitter link controllers were
not developed using this approach.

4. Driver implementations for Android Display Framework (ADF) are available, but they have the following
weak points: standard hardware-independent functions of the protocol need to be developed from the ground up
in each driver adding the possibility of errors and increasing the labor intensity. In addition, the ADF architecture
(which is a development of the fbdev) causes the necessity to combine transmitter link controller drivers
and display output controller drivers.

Implementations of controller drivers in some other Unix-compatible systems (e.g. FreeBSD) also use
the DRM as the most developed open source system to implement complex display tools.

Employed DTLC Driver Analysis Methods.

The article involved an analysis of the existing open source DTLC drivers for Linux OS and combined driv-
ers for video subsystems that include DTLC. In addition, a case study was conducted, which involved Display-
Port driver implementation for a prototype controller with the use of the analysis results. The case study included
development of the DisplayPort driver architecture, which allowed quick switching from prototype control to
standard device control. Then, the architecture developed in the course of the case study was extended to all
complex DTLCs using the preceding analysis.

Case Study: DisplayPort

One of the newest and most promising protocols for

: Upper DRM objects the display transmitter link is DisplayPort protocol,

i (framebuffers, planes, CRTCs) i which was announced to be created at a conference in
————————————————————————————————— 2005 [8], with the first version adopted in 2006 [9].
.............) AN The current version of the standard was adopted in 2016
Encoder | (a new version was announced in 2019), and the USB-C

R ST connectivity offered by the protocol made it popular in
embedded systems. The DisplayPort protocol is expected
to become the most popular one for display link trans-

porsreeeees mitting by 2019 [10].
. Bridge ! Driver Architecture in the DRM Model.
B H e To implement the DisplayPort protocol in DRM, the
l : DPAUX drm_connector and drm_bridge or drm_encoder types
___________________________ P are used (to implement the on/off semantics and estab-
Connector | lish connection [11]. In this case, for reasons described
in [6], and to ensure that the external DRM model is cor-
DisplayPort DRM driver components rect [6], the drm_bridge was chosen. As DisplayPort fea-

tures not only interface with the display, but also addi-
tional functions (e.g. transmission via the DPCD and 12C
protocols), DRM provides a special object DP AUX
(drm_dp_aux) for its implementation and several func-
tions designed to work with DisplayPort controllers only.

Fig. 1. DisplayPort software model in the KMS
model hierarchy

11

Software Journal: Theory and Applications

4, 2019

Initialization Sequence Implemented in the DRM Model.

In case of DRM, the typical work with DisplayPort is as follows:

1. Driver initialization — a drm_bridge (or drm_encoder) object is created with further creation of drm_con-
nector and its connection to the previously created object.

2. drm_dp aux initialization - a virtual device emulating the 12C slave bus is created and the additional
channel is prepared for transmitting data to the display.

3. Polling of available displays via the HPD protocol (the HPD must be implemented in DisplayPort) using
the standard detect function from the drm_connector API.

4. If the display is found, initialization and link training is performed. Various link training functions are
implemented as standard functions of the DRM subsystem, but the main algorithm is implemented by the driver
manufacturer in accordance with the standard. The link training is performed in two stages: clock recovery
and channel equalization. After both stages are completed, video signal transmission is initialized.

5. When the video signal transmission is initialized, the mode of the display is received via the I12C protocol

emulated using DPCD packages (Fig. 2).

6. When the video signal is transmitted, the channel is periodically tested for failures and errors. If such
failures and errors are found, the initialization is partially or fully reset, and all the initialization functions,
or a part thereof, are performed again for new display synchronization.

7. When the channel is tested, some devices send interrupts, which are processed by the driver initiating

the actions of the DRM subsystem.

[Write AUX_ADDRESS]

v

Write AUX_COMMAND,
AUX_LEN

1
If writing, write up to 16 bytes]

into AUX_WR registers
]
[Write AUX_START]
v
|Wait for INTERRUPT_STATUS]

REPLY_TIMEOUT
INTERRUPT_STATUS -

is RECEIVED ?2

RECEIVED

[Read REPLY_CODE

REPLY CODE NACK / DEFER

is ACK?

If reading, read up to 16 bytes
from AUX_RD registers

Transaction
complete

Fig. 2. Processing of messages from
the auxiliary channel in the processing
function for the device

To complete the initialization procedure successfully and
provide the possibility of interfacing between the DisplayPort
device and the display, information exchange procedures were
implemented via the additional channel [11] The implementation
can be performed either directly using packet messages,
or through message exchange in the 12C bus format. To imple-
ment the procedures, a platform-specific function for direct
packet exchange via DPCD is needed, which was implemented
during creation of the prototype driver. The operation algorithm
created for the device being developed is shown in Fig. 2. The
DRM subsystem allows using the transmission function for 12C
protocol operations, which is one of the benefits of the use of
this subsystem in development of DisplayPort controller drivers.

Newer DisplayPort versions are also able to transmit sound
via DisplayPort (this is relevant, for example, for display em-
bedded speakers). As audio data are transmitted via the addi-
tional DisplayPort channel (similarly to 12C), the developed
transmission function can be also used in this case. When audio
data are transmitted, they are converted with the DRM tools.

Strengths and Weaknesses of the Current DisplayPort
Implementation in the Linux Kernel.

When a proprietary DisplayPort driver was written for the
DRM subsystem, the following strengths of the subsystem were
found [6]:

1. An auxiliary channel object, which allowed to implement
only device-specific actions (such as the device register
configuration) without implementing the DisplayPort protocol
parts associated with interfacing with the additional channels.

2. Capabilities provided in the drm_connector API to create
nonstandard detection functions allowed implementation of the
HPD required for correct DisplayPort operations in the DRM
subsystem.

3. Additional adjustment functionality for mode setting
and on/off control of the DisplayPort controller according to the
external KMS model.

At the same time, the following weaknesses of the DRM
subsystem were found for writing DisplayPort drivers:

1. No fully implemented standard procedure of clock recovery and channel equalization. The DRM

subsystem has several functions facilitating the implementation of this procedure, but the main synchronization
procedure is left to the discretion of the driver manufacturers, which can lead to errors in implementation
of the protocol and errors in implementation of the procedure inside the driver, as well as different semantics
of implementation of the procedure in various drivers.

12

Software Journal: Theory and Applications 4, 2019

2. No implemented mode setting in the drm connector (not required in the external model).
For the DisplayPort protocol, it is extremely important to set the correct mode of the controller and properly
transmit it via DPCD to the display, while the drm_connector does not have such functions. At the current time,
the majority of drivers use the drm bridge to implement this functionality, as this object allows creation
of drivers in line with the external model. Addition of the functionality to the drm connector will allow
a decrease in the time needed to write a driver and a reduction of the code base for drivers using the drm_bridge
to implement mode setting only. For example, addition of the panel bridge API allowed a reduction of the code
base for the drivers using the drm_panel to implement operations with an embedded display [6].

Results and Discussion

Open Source Driver Architecture Analysis Results.

The analysis of the driver architectures described in [12] allowed identification of two typical display output
subsystem drivers, which may be figuratively defined as ‘all in one’ (Fig. 3) and ‘a specific driver for each
hardware upgrade’ (Fig. 4) The “all in one’ architecture is mainly used in drivers combined with GPU drivers,
while for separate drivers the 2nd type of the architecture is typically used. Looking at the architecture shown in
(Fig. 3), it can be noted that such a model does not allow the use of any DTLC drivers with any DC drivers; con-
sequently, DC and DTLC drivers should be developed in parallel. However, for embedded systems, this cannot
be always the case, as IP units from different manufacturers can be used for DC and DTLC. The approach allows
identification of a common code, if the interface between instances is based on the linux kernel module instances
interfacing mechanism (various instances of the same unit are used with various interfaces with hardware com-
ponents) [13].

The “a specific driver for each hardware upgrade’ architecture (Fig. 4) requires a larger number of DTLC driv-
ers to be developed, which is also a weakness, as it generates code duplication in case of similar controllers. There-
fore, a driver architecture for embedded systems was developed, which allows a quick update of the interfacing unit
with the hardware, and does not require any drivers to be developed for each DTLC controller version.

""" bo D : : DCD DC Driver
river : river
(conforms DRM model) i (conforms DRM model) | | . (conforms[_)RMmodeI) ______
[N SO A R
Common DC code
L
T rdge T L T dge T L
implementation) i implementation B”dge |mplementat|on
--------------------- I J’ Chip-specfic code
Connector !) Connector ¢ i ff ¢ ¢ oo
implementation) implementation
"DTLC implementation "DTLC implementation | | ¢
(conforms DRM model) (conforms DRM model) :
___________ T S— ; Connector
i Common DTLC code i implementation
Monolithic driver DRM Model Implementation
Fig. 3. Monolithic driver architecture for the display Fig. 4. DTLC driver architecture
output subsystem

DTLC Driver Architecture Requirements.

The case study and the analysis of the standards and documents allowed making the following findings:

1. Even if the hardware deviates from the standard, the DTLC driver architecture should be built using
the available standard model and considering the specific features of the API provided by the OS (Fig. 1).

2. The functions of the hardware components extending the standard should be considered at the first stage
only to the extent required for operational capability of the device (Fig. 2)

3. If the operation principles of the hardware deviate from the standard, the software components of the
driver should be upgraded to support the required part of the standard in interfaces with the user space and
display.

13

Software Journal: Theory and Applications 4, 2019

The “at least 1 driver for each device type’ principle should be followed in all cases. A combined driver has
a lower update rate, and errors in one of its components interfacing with hardware can cause incorrect operation
of all controlled devices resulting from being tightly coupled.

Architecture Developed for Embedded Systems.

For the DRM subsystem, the case study allowed circumventing the requirement to create a combined driver
by using a bridge + connector, and the AUX component was shaped into a separate entity by creating an internal
API, which allowed quick replacement of the unit interfacing with the hardware (in case of changes in the hard-
ware), while the unit integrated with the operating system remained the same, thus allowing a high level of test-
ing of the integration unit (Fig. 5)

___ In comparison with the architectures of the known
DC Driver (conforms DRM model) drivers supplied with the Linux OS kernel, the developed

architecture possesses a unique combination of features:
1. Employment of drm_bridge in combination with
the DeviceTree. According to the developer of the
v R internal bridge structure, it is most applicable to

"""""" Brldge a embedded systems [14]. ' o ‘
imol tati - ‘_g 2. Employment of an operation principle, which
e \QA _________________________ is most close to the applicable DTLC standard.
-------------------------------- : ‘;’ i Hardware All known DTLC drivers that are not related to DC
2 Interaction : | drivers [15] have deviations from the respective DTLC

5 | Module i | (HDMI or DP) standards.
prmmmmmmmm e e N S 5 3. In contrast to the known DTLC drivers based
: Connector ‘/D_/' on the ‘all in one’ [16] or ‘a specific driver for each
implementation < hardware upgrade’ [17,18] architectures, this architecture
--------------------------------- o) employs an internal API to optimize the support
DRM rnode.zl s of I;evyeral generations of IP unitg. An upgrade I())%[en
Implementation B involves addition of new functionality (e.g. switching
to a new standard version) or correction of errors
Fig. 5. DTLC driver architecture developed in hardware. In case of an internal API, the task to update
for implementation in the DRM subsystem a driver is limited to the update of its functions,
as opposed to drivers based on other architectures.

Using a connection with ‘as closer to the hardware as
possible and with separation of drivers using the DeviceTree’ (Fig. 4) and ‘a single combined driver, where the
major part of the code is common’ (Fig. 3) architectures, we obtained a new DTLC driver architecture for em-
bedded systems, which can be characterized as ‘the major part of the code is common, but communication via
the DeviceTree’ (Fig. 5) and allows a reduction in the scope of changes in the implementation code, when the
hardware is upgraded, and does not require any special tools to be developed.

Difficulties in Debugging of DTLC Drivers in Parallel with the Development of the Device.

Development of a driver can involve a situation, when apart from the software components of the driver, er-
rors also appear in the hardware components of the transmitter link controller. The following means may be used
for troubleshooting:

1. In case of absence or poor quality of documents, the protocol documents and the DRM subsystem
specifications (as related to the selected protocol) should be additionally used. It should be borne in mind that
prototype device documents can contain errors, therefore when data from such documents are used, they should
be checked against the device emulation data.

2. When documents are available, data contained therein should be checked by direct reading and direct
writing in the device registers, then the results obtained should be checked against the results delivered by the
driver. When a kernel driver is developed, hardly traceable errors can appear, which lead to writing of incorrect
values into the controller’s memory: such errors are much faster traced when the values are checked against
those obtained by direct writing.

3. When bare-metal tests are used for the device, the values they write into the controller’s memory should
be traced and used to check the driver’s operation in the same mode, which will allow distinguishing errors
in the hardware components (in this case, the test is performed improperly) and the driver (the test is performed
properly).

4. Earlier prototype devices can implement incomplete functionality described in the documents and the
standard: for example, pixel frequency control can be missing. This imposes some limitations on the tests, which
should by circumvented by testing the developed controller in marginal conditions and more applicable
conditions.

If the device reveals incorrect operation while the driver is operating in according with the documents and the
bare-metal test data, in can be assumed that the hardware components of the device have problems which should
be corrected either using the driver or by bare-metal testing of the prototyping system [19]. To test the developed

14

Software Journal: Theory and Applications 4, 2019

method, a driver was developed, which was tested in parallel with emulation of the prototype device using the
Altera system with a display supporting the DisplayPort 1.1a being used as an output device.

Conclusion

This article offers a new DTLC driver architecture based on the analysis of the existing Linux OS DRM sub-
system-based drivers, which architecture allows optimization of the development and upgrade of the drivers.

The area of further research into the architectures of graphic subsystem drivers will involve an analysis
of drivers for embedded systems with an external bus (e.g. employment of DTLC in PCI-E) and new case studies
in respect of specific DTLC protocols (via HDMI).

Acknowledgments: The publication is made as a part of a national assignment for SRISA RAS (funda-
mental scientific research GP 14) on the topic no. 0065-2019-0001 (AAAA-A19-119011790077-1).

References

Corbet J., Rubini A., Kroah-Hartman G. Linux Device Drivers. O’Reilly, 2005, 615 p.

2. Lisboa E.B.,, et al. An approach to concurrent development of device drivers and device controller. Proc.
11 ICACT, Phoenix Park, Korea (South), IEEE, 2009, pp. 571-575.

3. Jung Choon Park, Yong Hoon Choi, Taec ho Kim. Domain Specific Code Generation for Linux Device
Driver. Proc. 10 ICACT, Gangwon-Do, Korea (South), IEEE, 2008, pp. 101-104. DOI:
10.1109/ICACT.2008.4493721.

4. Dileep K.P., et al. Rules Based Automatic Linux Device Driver Verifier and Code Assistance. Proc.
ICRAIE, Jaipur, India, IEEE, 2014. DOI: 10.1109/ICRAIE.2014.6909321.

5. Oluwole Oyetoke. Embedded Systems Engineering, the Future of Our Technology World; A Look into the
Design of Optimized Energy Metering Devices. IJRES, 2015, vol. 18, pp. 17-21.

6. Linux GPU Driver Developer’s Guide. 2019. Avaible at: https://dri.freedesktop.org/docs/drm/gpu/
index.html (accessed Jule 06, 2019).

7. Verhaegen L. X and Modesetting: Atrophy illustrated. 2006. Avaible at: https://people.freedesktop.org/
~libv/X _and Modesetting - Atrophy illustrated %28paper%29.pdf (accessed Jule 06, 2019).

8. Kobayashi A. DisplayPort technical overview. Proc. 25th Int. Display Research Conf. EURODISPLAY
2005. Edinburgh, Scotland, UK, 2005, pp. 98—101.

9. VESA DisplayPort Standard Version 1. Video Electronics Standards Association, 2006. Avaible at:
https://glenwing.github.io/docs/DP-1.0.pdf (accessed Jule 06, 2019).

10.Noman Akhtar, Dinesh Kithany. DisplayPort expected to surpass HDMI in 2019. 2018. Avaible at:
https://technology.ihs.com/599141/displayport-expected-to-surpass-hdmi-in-2019 (accessed Jule 06, 2019).

11. VESA DisplayPort Standard Version 1, Revision la. Video Electronics Standards Association, 2008.
Avaible at: https://glenwing.github.io/docs/DP-1.1a.pdf (accessed Jule 06, 2019)

12. DRM Subsystem drivers. 2019. Avaible at: https://git.kernel.org/pub/scim/linux/kernel/git/torvalds/
linux.git/tree/drivers/gpu/drm (accessed Jule 06, 2019).

13. Bovet D.P., Cesati M. Understanding the Linux Kernel. O’Reilly, 2005, 942 p.

14.Sean P. DRM: Add drm_bridge. 2013. Avaible at: https://lwn.net/Articles/563156/ (accessed Jule 06,
2019).

15.Hajda A., et al. DRM Bridge drivers. 2019. Avaible at: https://git.kernel.org/pub/scm/linux/kernel/git/
torvalds/linux.git/tree/drivers/gpu/drm/bridge (accessed Jule 06, 2019).

16.Nikula J., Lahtinen J., Vivi R. Intel DRM Driver. 2019. Avaible at: https://git.kernel.org/pub/
scm/linux/kernel/git/torvalds/linux.git/tree/drivers/gpu/drm/i915/ (accessed Jule 06, 2019).

17.Hajda A., Purski M. TC 358764 DRM Driver. 2019. Avaible at: https:/git.kernel.org/pub/scm/
linux/kernel/git/torvalds/linux.git/tree/drivers/gpu/drm/bridge/tc358764.c. (accessed Jule 06, 2019).

18. Gusakov A., Zabel Ph. TC 358767 DRM Driver. 2019. Avaible at: https://git.kernel.org/pub/
scm/linux/kernel/git/torvalds/linux.git/tree/drivers/gpu/drm/bridge/tc358767.c. (accessed Jule 06, 2019).

19. Bogdanov A.Y. Experience in the Use of Protium FPGA-Based Prototyping Platform to Verify
Microprocessors. Proc. of the SRISA RAS, 2017, vol. 7, no. 2, pp. 46—49.

15

Software Journal: Theory and Applications 4, 2019

VIK 004.454
DOI: 10.15827/2311-6749.19.4.2

Texnosiorust paspadoTku ApaliBepa KOHTPOJLIEPA CONPSIKEHUs!
¢ YCTPO#CcTBOM 0TOOpakeHust uHGopManum AJs cuctembl Linux

K.B. Iyzun *, npocpammucm, rilian@niisi.ras.ru

K.A. Mampocenxo 1, x.m.n., doyenm Kagheopvl KOCMUHECKUX MENEKOMMYHUKAYUL, 3a6e0Vioujuii omoeiom,
mamrosenko_k@niisi.ras.ru

B.H. Peuwtemnuxos *, 0.¢p-m.n., npogpeccop, 2nasuviii Hayunwlii compyonux, Vn@niisi.ras.ru

Ylenwmp suzyanuszayuu u cnymuuxoswix un@opmayuonnvix mexnonozuii HUMCHU PAH, 2. Mockea, 117218,
Poccusa

I'maBHas nenp crathu — pa3pabOTKa apXUTEKTYpHI JpaiiBepa Jjisi KOHTpOoJUIepa CONPSIKEHHsI C YCTPOHCTBOM
otoOpaxxeHHss MHGOPMALUH I CIy4aeB, KOIJa y KOHTPOJUIepa eCTh CBOM COOCTBEHHBIC PETHCTPBI U ITaMsITh.
Pa3paboranHas apXWTEKTypa JOJDKHA YMEHBIIUTH KOJMYECTBO OOHOBJICHMH KOJa pealn3alid U He JIOJDKHA
TpeOoBaTh KaKUX-THOO CIENHAIbHBIX HHCTPYMEHTOB MIIM METOJIOB JIA pa3paboTKH CBOMX peanusanuid. B cra-
ThE aHAIN3UPYIOTCS OOIIEIOCTYIHbIE paiiBepsl Ha ocHOBe nojcucreMsl DRM 1 onpenensrorcest ABa OCHOBHBIX
THUIIa apXUTEKTYPBI, KOTOPBIE CIIYXKAT OCHOBOW I OOJBIIMHCTBA JPaiBEPOB C OTKPHITBIM MCXOJHBIM KOZOM.
Jayee aHAMTM3UPYIOTCS CHIIBHBIE M CJIa0ble CTOPOHBI TUIIOB apXUTEKTYPhl Ha MPEIMET BO3ZMOKHOCTH JOCTHIKE-
HUSl BBIIICYKa3aHHOI 11e11. BBISBICHHBIE THUIBI apXUTEKTYpBl ObUIM HCIIOJIB30BAaHBI ISl TOCTPOCHUSI HOBOW ap-
XHUTEKTYPBI, KOTOpas UIMEeT CHIIbHBIC CTOPOHBI 000X THITOB, YTO TTIO3BOJISET JOCTHYB LISITH.

B crartbe Tarxke ONHMCHIBAIOTCS pa3padOTaHHBIE METO/BI OTJIAJKH JpaiiBEepOB, OCHOBAHHBIE HA aHAIM3HpYe-
MOH apXUTEKType U YUUTHIBAIOLIHE BO3ZMOXKHOCTb OIIMOOK B 000PYAOBaHHH, OTCYTCTBHE WM HEIOCTATOYHOCTb
JOKYMEHTAIMH KOHTPOJIJIEpa M HEMOJIHYIO SMYJIAIHIO pa3pabaThIBaeMbIX YCTPOUCTB. Pe3ynbTaTsl OLEHNBAINCH
BO BpeMmsi pa3paboTku japaiiBepa DisplayPort mis mepcriekTHBHOTO KOHTpPOJUIEpa, U ATOT JpaiBep Obul MmpoTe-
CTHPOBaH BMECTE C IIPOTOTUIIOM YCTPOHCTBAa 1 MOHUTOPOM, ITOJIep KUBatOIIUM ctanaapT DisplayPort 1.1.

PesynbraThl paboThl MOT'YT OBITH UCIIOJIB30BaHBI IS CO3JIAHUSI HOBBIX JPaiiBEPOB KOHTPOJLIEPA COMPSIKEHUS
C YCTpOMCTBOM OTOOpakeHHs1 MHpopManuu it Unix-MogoOGHBIX CHUCTEM, KaK MPU HAIMYMH KOHTpOJUIepa Co-
CTOSIHMSI IIPOU3BOJICTBA, TaK M IIPH NapajuleIbHON pa3paboTKe HOBOTO KOHTPOJUIEpA U ApaliBepa JUls Hero.

Knroueswie cnosa: Linux, Opaiigep, apxumexmypa, DisplayPort, ecmpoentvle cucmembi.

Bnazooapuocmu: uccnedosanue npogedeno 6 pamxax cocyoapcmeennoeo sadanuss PI'Y OHL] HUUCH
PAH (svinonnenue gynoamenmanvhvix Hayunvix ucciedosanuil I'T1 14) no meme Ne 0065-2019-0001 "Mame-
Mamuueckoe obecneuenue U UHCMPYMEHMATbHble CPeOCcmead ONid MOOEAUPO8anUs, NPOSKMUPOBAHUS U Pa3pa-
OOMKU 21e-MEHMOB CLONCHBIX MEXHUUECKUX CUCTEM, NPOZPAMMHBIX KOMNHIEKCO8 U MeNeKOMMYHUKAYUOHHBIX
cemetl 6 paziuuHblx npodIeMHO-opueHmuposanivix ooracmsax” (AAAA-A19-119011790077-1).

Jumepamypa

1. Corbet J., Rubini A., Kroah-Hartman G. Linux Device Drivers. O’Reilly, 2005, 615 p.

2. Lisboa E.B., et al. An approach to concurrent development of device drivers and device controller. Proc.
11 ICACT, Phoenix Park, Korea (South), IEEE, 2009, pp. 571-575.

3. Jung Choon Park, Yong Hoon Choi, Tae ho Kim. Domain Specific Code Generation for Linux Device
Driver. Proc. 10 ICACT, Gangwon-Do, Korea (South), IEEE, 2008, pp. 101-104. DOIL 10.1109/
ICACT.2008.4493721.

4. Dileep K.P., et al. Rules Based Automatic Linux Device Driver Verifier and Code Assistance. Proc.
ICRAIE, Jaipur, India, IEEE, 2014. DOI: 10.1109/ICRAIE.2014.6909321.

5. Oluwole Oyetoke. Embedded Systems Engineering, the Future of Our Technology World; A Look into the
Design of Optimized Energy Metering Devices. IJRES, 2015, vol. 18, pp. 17-21.

6. Linux GPU Driver Developer’s Guide. 2019. URL: https://dri.freedesktop.org/docs/drm/gpu/index.html
(mara obpamenus: 06 urons 2019).

7. Verhaegen L. X and Modesetting: Atrophy illustrated. 2006. URL: https://people.freedesktop.org/~libv/
X and Modesetting - Atrophy illustrated %28paper%29.pdf (nara o6pamienus: 06 urons 2019).

8. Kobayashi A. DisplayPort technical overview. Proc. 25th Int. Display Research Conf. EURODISPLAY
2005. Edinburgh, Scotland, UK, 2005, pp. 98—101.

9. VESA DisplayPort Standard Version 1. Video Electronics Standards Association, 2006. URL:
https://glenwing.github.io/docs/DP-1.0.pdf (mara obpamenus: 06 utomns 2019).

10.Noman Akhtar, Dinesh Kithany. DisplayPort expected to surpass HDMI in 2019. 2018. URL:
https://technology.ihs.com/599141/displayport-expected-to-surpass-hdmi-in-2019 (mara oOGparmienusi: 06 wurons
2019).

16

Software Journal: Theory and Applications 4, 2019

11. VESA DisplayPort Standard Version 1, Revision la. Video Electronics Standards Association, 2008.
URL: https://glenwing.github.io/docs/DP-1.1a.pdf (naTa obpamenns: 06 urons 2019).

12.DRM Subsystem drivers. 2019. Avaible at: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/
linux.git/tree/drivers/gpu/drm (nmara obpamenus: 06 utons 2019).

13. Bovet D.P., Cesati M. Understanding the Linux Kernel. 3rd ed. O’Reilly, 2005.

14.Sean P. DRM: Add drm_bridge. 2013. URL: https://lwn.net/Articles/563156/ (nara obpamenus: 06 uroms
2019).

15. Hajda A. et al. DRM Bridge drivers. 2019. URL: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/
linux.git/tree/drivers/gpu/drm/bridge (nara obpamenus: 06 utons 2019).

16.Nikula J., Lahtinen J., Vivi R. Intel DRM Driver. 2019. URL: https://git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/tree/drivers/gpu/drm/i915/ (nata obpamenns: 06 urons 2019).

17.Hajda A., Purski M. TC 358764 DRM Driver. 2019. URL: https://git.kernel.org/pub/scm/linux/kernel/git/
torvalds/linux.git/tree/drivers/gpu/drm/bridge/tc358764.c. (mara obpamenus: 06 utomns 2019).

18. Gusakov A., Zabel Ph. TC 358767 DRM Driver. 2019. URL: https://git.kernel.org/pub/scm/linux/kernel/
git/torvalds/linux.git/tree/drivers/gpu/drm/bridge/tc358767.c. (nata odpamierus: 06 uroms 2019).

19. bormano A.W. Ombit ipuMeHerns wiatdopmel npototunupoBannus Ha [IJIMC “Protium” mns Bepudu-
kanuu Mukponpoueccopos // Tpynst HUMCU PAH. 2017. T. 7. Ne 2. C. 46-49.

17

