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The main purpose of the paper is to develop a driver architecture for a display transmitter link controller 

when the controller has its own registers and memory. The developed architecture should reduce update changes 

in the implementation code and should not require any special tools or methods to develop its implementations. 

The paper analyzes publicly accessible DRM subsystem-based drivers and identifies two main architecture 

types, which serve as a basis for the majority of open source drivers. It also analyzes the strengths and weak-

nesses of the architecture types to achieve the above purpose. The identified architecture types were used  

to build a new architecture that has the strengths of both types, which allows achieving the purpose.  

The paper also describes the developed driver debugging methods, which are based on the architecture under 

analysis and take into account the possibility of errors in the hardware, absence or insufficiency of controller 

documentation and incomplete emulation of the devices being developed. The results were evaluated during  

development of the DisplayPort driver for a perspective controller, and the driver was tested together with  

a prototype device and a monitor supporting the DisplayPort 1.1 standard. 

The results of this paper can be used to create new transmitter link controller drivers for Unix-like systems 

both when a production state controller exists and when doing parallel development of a new controller and  

a driver for it. 
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Currently, graphic display units are developing at a high pace: new displays with a resolution over 

1920x1080 are appearing, refresh rate and chrominance frequency are growing – some modern displays have  

a refresh rate of 120 HZ and more than 8 bit per a color channel already. This makes the use of new standards  

in development of display interface controllers allowing such use of the communication channel between  

a display and a display controller a relevant issue. Data transmission between a display and a display controller 

unit often requires a separate display transmitter link controller (DTLC) to be created, which will complement  

the display controller by converting the output in the form required by the display. To be able to transmit high-

resolution video at a rate of 1 Gbit/s and higher, such a device requires complex program control (device-

specific), as opposed to earlier protocols, which do not require such control, or where common control method 

standards were developed long ago. In the context of this article, such DTLCs are called complex DTLCs. As the 

number of tasks with the use of high-resolution video is growing, new approaches to the development of drivers 

for such (complex) devices are needed [1].  

When DTLC drivers are developed in parallel with the development or upgrade of the device, the following 

problems are encountered:  

1. Unsynced development of the driver and the controller causes delays in the development, as it becomes 

difficult to distinguish between errors attributable to the controller and those attributable to the driver.  

2. Absence or insufficiency of documents in case of a partially closed source code cause errors in the 

development of the driver and the above described problem.  

3. The necessity to adjust the driver architecture to the controller’s features, as for various reasons, in some 

embedded controllers the standard can be implemented only partially.  

To address these problems, several approaches, such as creation of a DSL (Domain Specific Language) [2], 

creation of a driver generator based on XML description [3] and use of verifiers [4], are employed. Such ap-

proaches have their strengths, but they also have weak points, the most important of which are the impossibility 

to use methods applied to partially closed source code of the controller and indirect costs related to development 

of auxiliary tools. This article offers a new driver architecture for parallel development (or upgrade) of the con-

troller, which allows minimization of indirect costs in the process of implementation (does not require develop-

ment of new DSL or new verifiers) and does not require a completely open source code of the controller. To im-

plement the architecture, Linux OS was chosen as the most popular OS in embedded systems, while the devel-

opment of modern drivers is most relevant for embedded systems. [5] 



Software Journal: Theory and Applications                     4, 2019 

 11 

Research Methods 

 

Approaches to Development of Display Controller Drivers Using Linux OS as an Example.  

There are several known approaches related to the use of some known graphic subsystem tools that are em-

ployed in development of DTLC drivers for Linux. We will look at the most popular of them:  

1. DRM (Kernel Mode Setting). The display transmitter link interface is a part of the Direct Rendering 

Management (DRM) infrastructure. Looking at the DRM subsystem as a software model of a real output device, 

all transmitter link interfaces refer to the connector type, as they connect a display and the display output 

controller, where the display is usually the connected element [6]. However, the connector type implementation 

cannot control power supply to the device and set the required mode, therefore complex DTLC drivers are most 

commonly implemented as a bridge + connector bunch, or much less often as an encoder + connector bunch.  

In contrast to the option with the use of a bridge, the second option does not refer to an external model, being 

though realizable in practice [6].  

2. User Mode Setting (UMS) or an implementation with setting modes and interfacing with the hardware 

inside an X server. Problems in the implementation and employment of the UMS were identified in 2006 [7], 

after which drivers for transmitter link controllers were not actually developed using this approach.  

3. FrameBuffer device (fbdev). This kernel interface preceded the DRM KMS unit and was most 

widespread till 2008-2009, when the first KMS version was taken into the kernel. The fbdev interface did not 

provide an implementation with setting up modes in the kernel, thus requiring the UMS implementation, which 

caused the above-mentioned problems, and after the KMS appeared, drivers for transmitter link controllers were 

not developed using this approach.  

4. Driver implementations for Android Display Framework (ADF) are available, but they have the following 

weak points: standard hardware-independent functions of the protocol need to be developed from the ground up 

in each driver adding the possibility of errors and increasing the labor intensity. In addition, the ADF architecture 

(which is a development of the fbdev) causes the necessity to combine transmitter link controller drivers  

and display output controller drivers.  

Implementations of controller drivers in some other Unix-compatible systems (e.g. FreeBSD) also use  

the DRM as the most developed open source system to implement complex display tools.  

Employed DTLC Driver Analysis Methods.  

The article involved an analysis of the existing open source DTLC drivers for Linux OS and combined driv-

ers for video subsystems that include DTLC. In addition, a case study was conducted, which involved Display-

Port driver implementation for a prototype controller with the use of the analysis results. The case study included 

development of the DisplayPort driver architecture, which allowed quick switching from prototype control to 

standard device control. Then, the architecture developed in the course of the case study was extended to all 

complex DTLCs using the preceding analysis. 

 

Case Study: DisplayPort 

 

One of the newest and most promising protocols for 

the display transmitter link is DisplayPort protocol, 

which was announced to be created at a conference in 

2005 [8], with the first version adopted in 2006 [9].  

The current version of the standard was adopted in 2016 

(a new version was announced in 2019), and the USB-C 

connectivity offered by the protocol made it popular in 

embedded systems. The DisplayPort protocol is expected 

to become the most popular one for display link trans-

mitting by 2019 [10].  

Driver Architecture in the DRM Model.  

To implement the DisplayPort protocol in DRM, the 

drm_connector and drm_bridge or drm_encoder types 

are used (to implement the on/off semantics and estab-

lish connection [11]. In this case, for reasons described 

in [6], and to ensure that the external DRM model is cor-

rect [6], the drm_bridge was chosen. As DisplayPort fea-

tures not only interface with the display, but also addi-

tional functions (e.g. transmission via the DPCD and I2C 

protocols), DRM provides a special object DP AUX 

(drm_dp_aux) for its implementation and several func-

tions designed to work with DisplayPort controllers only. 

 
 

Fig. 1. DisplayPort software model in the KMS 

model hierarchy 
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Initialization Sequence Implemented in the DRM Model.  

In case of DRM, the typical work with DisplayPort is as follows:  

1. Driver initialization – a drm_bridge (or drm_encoder) object is created with further creation of drm_con-

nector and its connection to the previously created object.  

2. drm_dp_aux initialization - a virtual device emulating the I2C slave bus is created and the additional 

channel is prepared for transmitting data to the display.  

3. Polling of available displays via the HPD protocol (the HPD must be implemented in DisplayPort) using 

the standard detect function from the drm_connector API.  

4. If the display is found, initialization and link training is performed. Various link training functions are 

implemented as standard functions of the DRM subsystem, but the main algorithm is implemented by the driver 

manufacturer in accordance with the standard. The link training is performed in two stages: clock recovery  

and channel equalization. After both stages are completed, video signal transmission is initialized.  

5. When the video signal transmission is initialized, the mode of the display is received via the I2C protocol 

emulated using DPCD packages (Fig. 2).  

6. When the video signal is transmitted, the channel is periodically tested for failures and errors. If such 

failures and errors are found, the initialization is partially or fully reset, and all the initialization functions,  

or a part thereof, are performed again for new display synchronization.  

7. When the channel is tested, some devices send interrupts, which are processed by the driver initiating  

the actions of the DRM subsystem.  

To complete the initialization procedure successfully and 

provide the possibility of interfacing between the DisplayPort 

device and the display, information exchange procedures were 

implemented via the additional channel [11] The implementation 

can be performed either directly using packet messages,  

or through message exchange in the I2C bus format. To imple-

ment the procedures, a platform-specific function for direct 

packet exchange via DPCD is needed, which was implemented 

during creation of the prototype driver. The operation algorithm 

created for the device being developed is shown in Fig. 2. The 

DRM subsystem allows using the transmission function for I2C 

protocol operations, which is one of the benefits of the use of 

this subsystem in development of DisplayPort controller drivers.  

Newer DisplayPort versions are also able to transmit sound 

via DisplayPort (this is relevant, for example, for display em-

bedded speakers). As audio data are transmitted via the addi-

tional DisplayPort channel (similarly to I2C), the developed 

transmission function can be also used in this case. When audio 

data are transmitted, they are converted with the DRM tools. 

Strengths and Weaknesses of the Current DisplayPort  

Implementation in the Linux Kernel.  

When a proprietary DisplayPort driver was written for the 

DRM subsystem, the following strengths of the subsystem were 

found [6]:  

1. An auxiliary channel object, which allowed to implement 
only device-specific actions (such as the device register 
configuration) without implementing the DisplayPort protocol 
parts associated with interfacing with the additional channels.  

2. Capabilities provided in the drm_connector API to create 
nonstandard detection functions allowed implementation of the 
HPD required for correct DisplayPort operations in the DRM 
subsystem.  

3. Additional adjustment functionality for mode setting  
and on/off control of the DisplayPort controller according to the 
external KMS model.  

At the same time, the following weaknesses of the DRM 

subsystem were found for writing DisplayPort drivers:  

1. No fully implemented standard procedure of clock recovery and channel equalization. The DRM 

subsystem has several functions facilitating the implementation of this procedure, but the main synchronization 

procedure is left to the discretion of the driver manufacturers, which can lead to errors in implementation  

of the protocol and errors in implementation of the procedure inside the driver, as well as different semantics  

of implementation of the procedure in various drivers.  

 
 

Fig. 2. Processing of messages from  

the auxiliary channel in the processing 

function for the device 
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2. No implemented mode setting in the drm_connector (not required in the external model).  

For the DisplayPort protocol, it is extremely important to set the correct mode of the controller and properly 

transmit it via DPCD to the display, while the drm_connector does not have such functions. At the current time, 

the majority of drivers use the drm_bridge to implement this functionality, as this object allows creation  

of drivers in line with the external model. Addition of the functionality to the drm_connector will allow  

a decrease in the time needed to write a driver and a reduction of the code base for drivers using the drm_bridge 

to implement mode setting only. For example, addition of the panel_bridge API allowed a reduction of the code 

base for the drivers using the drm_panel to implement operations with an embedded display [6].  

 

Results and Discussion 

 

Open Source Driver Architecture Analysis Results.  

The analysis of the driver architectures described in [12] allowed identification of two typical display output 

subsystem drivers, which may be figuratively defined as ‘all in one’ (Fig. 3) and ‘a specific driver for each 

hardware upgrade’ (Fig. 4) The ‘all in one’ architecture is mainly used in drivers combined with GPU drivers, 

while for separate drivers the 2nd type of the architecture is typically used. Looking at the architecture shown in 

(Fig. 3), it can be noted that such a model does not allow the use of any DTLC drivers with any DC drivers; con-

sequently, DC and DTLC drivers should be developed in parallel. However, for embedded systems, this cannot 

be always the case, as IP units from different manufacturers can be used for DC and DTLC. The approach allows 

identification of a common code, if the interface between instances is based on the linux kernel module instances 

interfacing mechanism (various instances of the same unit are used with various interfaces with hardware com-

ponents) [13].  

The ‘a specific driver for each hardware upgrade’ architecture (Fig. 4) requires a larger number of DTLC driv-

ers to be developed, which is also a weakness, as it generates code duplication in case of similar controllers. There-

fore, a driver architecture for embedded systems was developed, which allows a quick update of the interfacing unit 

with the hardware, and does not require any drivers to be developed for each DTLC controller version.  

DTLC Driver Architecture Requirements.  

The case study and the analysis of the standards and documents allowed making the following findings:  

1. Even if the hardware deviates from the standard, the DTLC driver architecture should be built using  

the available standard model and considering the specific features of the API provided by the OS (Fig. 1).  

2. The functions of the hardware components extending the standard should be considered at the first stage 

only to the extent required for operational capability of the device (Fig. 2)  

3. If the operation principles of the hardware deviate from the standard, the software components of the 

driver should be upgraded to support the required part of the standard in interfaces with the user space and 

display.  

Fig. 3. Monolithic driver architecture for the display  

output subsystem 
Fig. 4. DTLC driver architecture 
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The ‘at least 1 driver for each device type’ principle should be followed in all cases. A combined driver has  

a lower update rate, and errors in one of its components interfacing with hardware can cause incorrect operation 

of all controlled devices resulting from being tightly coupled.  

Architecture Developed for Embedded Systems.  

For the DRM subsystem, the case study allowed circumventing the requirement to create a combined driver 

by using a bridge + connector, and the AUX component was shaped into a separate entity by creating an internal 

API, which allowed quick replacement of the unit interfacing with the hardware (in case of changes in the hard-

ware), while the unit integrated with the operating system remained the same, thus allowing a high level of test-

ing of the integration unit (Fig. 5)  

In comparison with the architectures of the known 

drivers supplied with the Linux OS kernel, the developed 

architecture possesses a unique combination of features:  
1. Employment of drm_bridge in combination with 

the DeviceTree. According to the developer of the 
internal bridge structure, it is most applicable to 
embedded systems [14].  

2. Employment of an operation principle, which  
is most close to the applicable DTLC standard.  
All known DTLC drivers that are not related to DC 
drivers [15] have deviations from the respective DTLC 
(HDMI or DP) standards.  

3. In contrast to the known DTLC drivers based  
on the ‘all in one’ [16] or ‘a specific driver for each 
hardware upgrade’ [17,18] architectures, this architecture 
employs an internal API to optimize the support  
of several generations of IP units. An upgrade often 
involves addition of new functionality (e.g. switching  
to a new standard version) or correction of errors  
in hardware. In case of an internal API, the task to update 
a driver is limited to the update of its functions,  
as opposed to drivers based on other architectures.  

Using a connection with ‘as closer to the hardware as 

possible and with separation of drivers using the DeviceTree’ (Fig. 4) and ‘a single combined driver, where the 

major part of the code is common’ (Fig. 3) architectures, we obtained a new DTLC driver architecture for em-

bedded systems, which can be characterized as ‘the major part of the code is common, but communication via 

the DeviceTree’ (Fig. 5) and allows a reduction in the scope of changes in the implementation code, when the 

hardware is upgraded, and does not require any special tools to be developed.  

Difficulties in Debugging of DTLC Drivers in Parallel with the Development of the Device.  

Development of a driver can involve a situation, when apart from the software components of the driver, er-

rors also appear in the hardware components of the transmitter link controller. The following means may be used 

for troubleshooting:  

1. In case of absence or poor quality of documents, the protocol documents and the DRM subsystem 

specifications (as related to the selected protocol) should be additionally used. It should be borne in mind that 

prototype device documents can contain errors, therefore when data from such documents are used, they should 

be checked against the device emulation data.  

2. When documents are available, data contained therein should be checked by direct reading and direct 

writing in the device registers, then the results obtained should be checked against the results delivered by the 

driver. When a kernel driver is developed, hardly traceable errors can appear, which lead to writing of incorrect 

values into the controller’s memory: such errors are much faster traced when the values are checked against 

those obtained by direct writing.  

3. When bare-metal tests are used for the device, the values they write into the controller’s memory should 

be traced and used to check the driver’s operation in the same mode, which will allow distinguishing errors  

in the hardware components (in this case, the test is performed improperly) and the driver (the test is performed 

properly).  

4. Earlier prototype devices can implement incomplete functionality described in the documents and the 

standard: for example, pixel frequency control can be missing. This imposes some limitations on the tests, which 

should by circumvented by testing the developed controller in marginal conditions and more applicable 

conditions.  

If the device reveals incorrect operation while the driver is operating in according with the documents and the 

bare-metal test data, in can be assumed that the hardware components of the device have problems which should 

be corrected either using the driver or by bare-metal testing of the prototyping system [19]. To test the developed 

 
 

Fig. 5. DTLC driver architecture developed  

for implementation in the DRM subsystem 
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method, a driver was developed, which was tested in parallel with emulation of the prototype device using the 

Altera system with a display supporting the DisplayPort 1.1a being used as an output device. 

 

 

Conclusion 

 

This article offers a new DTLC driver architecture based on the analysis of the existing Linux OS DRM sub-

system-based drivers, which architecture allows optimization of the development and upgrade of the drivers.  

The area of further research into the architectures of graphic subsystem drivers will involve an analysis  

of drivers for embedded systems with an external bus (e.g. employment of DTLC in PCI-E) and new case studies 

in respect of specific DTLC protocols (via HDMI).  
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Главная цель статьи – разработка архитектуры драйвера для контроллера сопряжения с устройством 

отображения информации для случаев, когда у контроллера есть свои собственные регистры и память. 

Разработанная архитектура должна уменьшить количество обновлений кода реализации и не должна 

требовать каких-либо специальных инструментов или методов для разработки своих реализаций. В ста-

тье анализируются общедоступные драйверы на основе подсистемы DRM и определяются два основных 

типа архитектуры, которые служат основой для большинства драйверов с открытым исходным кодом. 

Далее анализируются сильные и слабые стороны типов архитектуры на предмет возможности достиже-

ния вышеуказанной цели. Выявленные типы архитектуры были использованы для построения новой ар-

хитектуры, которая имеет сильные стороны обоих типов, что позволяет достичь цели.  

В статье также описываются разработанные методы отладки драйверов, основанные на анализируе-

мой архитектуре и учитывающие возможность ошибок в оборудовании, отсутствие или недостаточность 

документации контроллера и неполную эмуляцию разрабатываемых устройств. Результаты оценивались 

во время разработки драйвера DisplayPort для перспективного контроллера, и этот драйвер был проте-

стирован вместе с прототипом устройства и монитором, поддерживающим стандарт DisplayPort 1.1. 

Результаты работы могут быть использованы для создания новых драйверов контроллера сопряжения 

с устройством отображения информации для Unix-подобных систем, как при наличии контроллера со-

стояния производства, так и при параллельной разработке нового контроллера и драйвера для него. 

Ключевые слова: Linux, драйвер, архитектура, DisplayPort, встроенные системы. 
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