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This paper presents an experiment in the computer vision zone aimed at automatization the neural network 

training to recognize industrial objects on the example of turbo pump unit parts for the RE-120 rocket engine.  

To train the neural network, the authors used both a data set consisting of photos of already existing parts  

and a set of images from a CAD-program that simulates the design stage of the required product. 

By comparison of test results, it confirmed the hypothesis it is possible to train computer vision systems  

to distinguish not yet existing objects based on screenshots of their digital counterparts (CAD-models). By col-

lecting the required data before direct production of the product, it is possible to achieve good recognition rates 

even for an actual object with simple geometry. 

The paper presents the results of the application of this method in comparison with the traditional teaching 

approach, and also considers the perspectives for using this technology in the industry. 

Keywords: computer vision, assembly process, control system, manufacturing, Python, aviation industry, 

Keras, aerospace industry, industrial robots, object recognition. 

 

Aerospace industry and aircraft engine building are rated among less robotic industries. 

Several reasons can explain this: 

– structural complexity of the product (the presence of many small parts that make installation difficult  

by robots); 

– prime requirements for the performance; 

– availability of intermediate control (often with the help of complex equipment); 

– small scale interchangeability of parts and components. 

These requirements severely restrict the ability to automate production and installation processes or make them 

inefficient. Therefore, manual labor is still used in the assembly, although it creates certain risks because  

of people’s mistakes. The effect of the human factor remains significant, despite the regular professional develop-

ment of specialists, their training, as well as documentary and production control.  

Therefore, there is a problem of monitoring assembly processes and people's work in actual time to minimize 

negative consequences. To solve it, we propose to use computer vision. 

This raises several questions: whether it is possible to apply computer vision at the stages of the technological 

process and in the people actions during the execution of an operation, how to train such a model to recognize all 

the required actions [1] and whether this process can be automated. 

 

The source analysis 

 

Nowadays, there is a vast amount of materials devoted to object recognition algorithms, their libraries, and the 

results got in various industries. Special attention in the research has been given to defectoscopy and the use of 

machine vision at enterprises. The programs are developed specifically for the practical application of the technol-

ogy of object recognition in a video (or photo) with actual objects. 

For example, when working with microelectronics, it is very important to recognize the components of the 

board and inspect them visually for defects. A team of researchers led by Baigin proposed their own machine 

vision system based on the Otsu method and the Hough transform [2]. Sometimes more complex problems require 

the use of non-standard approaches. One example is the system for recognizing defects in Stozhanovich's textiles 

[3]. Its peculiarity is that neural networks are used to search for a defect in actual time. For 2001, this was a big 

breakthrough. For more successful recognition, it pays special attention to the preprocessing process. A carefully 

developed concept of using preprocessing can be found in Sartak, whose program allows you to get images of 

defective parts with high accuracy and sort them using the TensorFlow library [4]. Neural networks are becoming 

an increasingly popular tool in the industry, combining different approaches to solve problems, for example, in the 

case of identifying the geometry of parts [5]. 
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Problem formulation 
 

The design process is constantly changing. It reflects this in the design documentation. The item (node, item) 

passes the stage of approval and is supplied to the production. If the installation is not possible, documents are 

created to correct defects, and the design process is started again until the object is installed in the specified location 

according to the technical problem. Accordingly, it is necessary to create a recognition model that can identify 

assembly units in photos (or videos) before the physical creation of parts [6]. 
 

Initial data 
 

As a sample, there was a turbo pump (TP) of a rocket engine 

(Fig. 1). 

Assembly/disassembly of the TP comprises 10 positions: 

housing assembly, turbine rotor, retainer, screw (x2), impeller, 

conveyor screw, large nut, large reflector, small reflector, small 

nut. These names are conditional and are used only within the 

framework of laboratory work (Tabl. 1). The numbers in the name 

show the number in the assembly sequence in the lab form  

(Fig. 2). 

It bases part selection on the requirements for recognition 

models. It is necessary to check whether it can distinguish between objects: 

– with different geometries; 

– with approximately the same geometry; 

– several ones at once. 

Thus, there were the following groups of parts: 

– small nut and screw; 

– small nut and large nut; 

– small nut, screw, small reflector, and turbine rotor.  

To test the recognition capability, we selected the following groups of initial data: screenshots of models and 

a mixture of screenshots of parts with their photos (Fig. 3). Thus, we tested the hypothesis it is possible  

to form a data set at the design stage (using screenshots of the designed parts) and check how accurately the details 

will differ on the mixed data set. 
 

 

 

 

 

  

  

Fig. 1. Turbo pump of the RE-120  

on the laboratory bench 

Fig. 2. Explosion-assembly diagram  

of the turbo pump 

Fig. 3. Examples of photographs 

used in training models 

 

Since there was no documentation for this unit, all three-dimensional models of parts were made using reverse 

engineering technology (scanned with a METRIS MC30M7 scanner, 2008), and the resulting point cloud was 

processed in Geometrix Design X software. During processing, the appearance of the models was simplified. Fig-

ure 4 shows the result of such processing. 
 

Experiment 
 

Data sets 

 

Eventually, six data sets were generated. 

1) Data set 1: screenshots of the nuts (nut_12) and screw (shneck_11). 

2) Data set 2: images and screenshots nuts (nut_12) and screw (shneck_11). 

Table 1 

Details and their symbols 
 

Item Symbol 

Nut 12 

Nut 15 

nut_12 

nut_15 

Screw 11 shnek_11 

Reflector 14 reflect_14 

Turbine rotor 16 turbRotor_16 
 



Software Journal: Theory and Applications                     4, 2020 

 3 

3) Data set 3: screenshots of two similar parts – nuts (nut_12) and nuts small (nut_15). 

4) Data set 4: photos and screenshots of two similar parts – nuts (nut_12) and nuts small (nut_15). 

5) Data set 5: screenshots of four parts – screw (shneck_11), turbine rotor (turbRotor_16), large nut (nut_12), 

reflector (reflect_14). 

6) Data set 6: photographs and screenshots of four parts – screw (shneck_11), turbine rotor (turbRotor_16), 

large nut (nut_12), reflector (reflect_14). 

 

The usable model 

 

The changed Alexnet network – convolutional neural Network (CNN, Convolutional Neural Network) was 

used as a model for training in this work [7]. AlexNet has had a major impact on machine learning, especially in 

the application of deep learning to machine vision. (As of 2020, the paper on AlexNet has been cited over 24,000 

times.) 

AlexNet contains eight layers: the first five are convolutional, and the next three are fully connected layers.  

As an activation function, ReLU was used, which showed an improvement in training performance compared to 

tanh and sigmoid [8].  

To speed up network learning, we used an approach based on adding normalizing layers at the learning stage 

[9].  

Also in the network architecture, the size of the sub-sample core (max-pool) was reduced from 3x3 to 2x2, 

since this size is more often used and speeds up network training [10]. 

Using the architecture of the Alexnet network is because of its study and relatively small depth (a few hidden 

layers), which facilitates the learning process of the classifier and allows you to ensure a low computational com-

plexity of the feature extraction process relative to other network architectures. 

 

Image augmentation 
 

To improve the classification accuracy [11] and reduce the over-training effect, the original data set (Fig. 3) 

was increased by 10 times by various transformations (Fig. 5). It preserved data balancing – it aligned the number 

of images of different types of parts. Augmentation was performed by changing the orientation, brightness, contrast 

of the image, its chroma, and using affine transformations [12]. 
 

 

The experiment progress 

 

During the experiment, the model was trained first on two different parts, then on two fairly similar ones, then 

on a larger number of parts (four). At the same time, in each case, the training was carried out first  

exclusively on screenshots, and then using photos. Each time, the model was trained anew on the corresponding 

details (Tabl. 2–5). 

Figure 6 shows an example of recognizing data sets 1 and 2. 
 

Comparison of results (data sets 1 and 2) 

 

When using actual photos in training, the recognition result is worse on average-it fell by 9 % (Fig. 7). 

Tables 6–9 and Figure 8 show examples of recognition (data sets 3 and 4). 

  

Fig. 4. Simplified geometry of the parts  

that were used to make screenshots for training  

the recognition model 

Fig. 5. Examples of augmented images 
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Table 2 

Data set 1 

 

train nut_12: 3000 

shnek_11:3000 

valid nut_12: 350 

shnek_11: 350 

test nut_12: 50 (photos), 50 (screenshots) 

shnek_11: 50 (photos), 50 (screenshots) 
 

Table 3 

Results for data set 1 

 

Detail 
Photos, 

% of recognition 

Screenshots, 

% of recognition 

nut_12 84 66 

shnek_11 90 72 

The average % 

of recognition 
87 69 

 

Table 4 

Data set 2 

 

train nut_12: 3000 

shnek_11: 3000 

valid nut_12: 350 

shnek_11: 350 

test nut_12: 50 (photos), 50 (screenshots) 

shnek_11: 50 (photos), 50 (screenshots) 
 

Table 5 

Results for data set 2 

 

Detail 
Photos, 

% of recognition 

Screenshots, 

% of recognition 

nut_12 84 40 

shnek_11 72 36 

The average % of 

recognition 
78 38 

 

 

 

 

Table 6 

Data set 3 

 

train nut_12: 3000 

nut_15: 3000 

valid nut_12: 350 

nut_15: 350 

test nut_12: 50 (photos), 50 (screenshots) 

nut_15: 50 (photos), 50 (screenshots) 
 

 

Table 7 

Results for data set 3 

 

Detail 
Photos, 

% of recognition 

Screenshots, 

% of recognition 

nut_12 96 80 

nut_15 74 84 

The average % 

of recognition 
85 82 

 

 

 

Table 8 

Data set 4 

 

train nut_12: 1000 (photos), 500 (screenshots) 

nut_15: 1000 (photos), 500 (screenshots) 

valid nut_12: 200 (photos), 50 (screenshots) 

nut_15: 200 (photos), 50 (screenshots) 

test nut_12: 50 (photos), 50 (screenshots) 

nut_15: 50 (photos), 50 (screenshots) 
 

 

 

Table 9 

Results for data set 4 

 

Detail 
Photos, 

% of recognition 

Screenshots, 

% of recognition 

nut_12 70 74 

nut_15 60 70 

The average % 

of recognition 
65 72 

 

 

      

 

Fig. 6. Example photos in data sets 1 and 2 

 

Fig. 7. Comparison of recognition results  

for data sets 1 and 2 
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Comparison of results (data sets 3 and 4) 

 

When using actual photos in training, the recognition result is on average worse – it fell by 20 % (Fig. 9). 

 

   

 

 

Fig. 8. Example photos for data sets 3 and 4 

 

Fig. 9. Comparison of recognition results in 

data sets 3 and 4 

 

Tables 10–13 and figure 10 provide examples of recognition (data sets 5 and 6). 

 

Table 10 

Data set 5 
 

train nut_12: 3000 

shnek_11: 3000 

reflect_14: 3000 

turbRotor_16: 3000 

valid nut_12: 350 

shnek_11: 350 

reflect_14: 350 

turbRotor_16: 350 

test nut_12: 50 (photos), 50 (screenshots) 

shnek_11: 50 (photos), 50 (screenshots) 

reflect_14: 50 (photos), 50 (screenshots) 

turbRotor_16: 50 (photos), 50 (screenshots) 
 

Table 11 

Results for data set 5 
 

Detail 
Photos, 

% of recognition 

Screenshots, 

% of recognition 

nut_12 76 80 

shnek_11 76 84 

reflect_14 64 94 

turbRotor_16 70 90 

The average % 

of recognition 
71,5 87 

 

 

Table 12 

Data set 6 

 

train nut_12: 1000 (photos), 500 (screenshots) 

shnek_11: 1000 (photos), 500 (screenshots) 

reflect_14: 1000 (photos), 500 (screenshots) 

turbRotor_16: 1000 (photos), 500 (screen-

shots) 

valid nut_12: 200 (photos), 50 (screenshots) 

shnek_11: 200 (photos), 50 (screenshots) 

reflect_14: 200 (photos), 50 (screenshots) 

turbRotor_16: 200 (photos), 50 (screen-

shots) 

test nut_12: 50 (photos), 50 (screenshots) 

shnek_11: 50 (photos), 50 (screenshots) 

reflect_14: 50 (photos), 50 (screenshots) 

turbRotor_16: 50 (photos), 50 (screenshots) 
 

 

Table 13 

Results for data set 6 

 

Detail 
Photos, 

% of recognition 

Screenshots, 

% of recognition 

nut_12 70 64 

shnek_11 68 76 

reflect_14 64 70 

turbRotor_16 64 82 

The average % 

of recognition 
66.5 73 

 

 

Performance evaluation of the proposed approach 

 

Let's check the effect of similarity of details on the probability of correct recognition. A comparison of the 

results (data sets 2 and 4) showed that when using sufficiently similar parts (of the same type) for training, the 

average recognition level is 2 % lower (Fig. 11). 
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Let's take the data of photo recognition in each experiment: in all cases, the average percentage of recognition 

using photos was lower (Fig. 12, 13). 
 

  

Fig. 11. Average recognition score of models 2 and 4 Fig. 12. Comparison of recognition results  

in data sets 5 and 6 

 

Based on the data got, we can also note it that even an inferior quality of the CAD model can provide  

a recognition probability of over 70 %. This is a fairly significant result (Fig. 14). However, an increase in the 

number of recognized objects in the model leads to a decrease in the numerical value of the recognition probability 

(Fig. 15). The reasons may be an insufficient number of photos/screenshots for training the model, insufficient 

quality of CAD models, settings of training parameters. 
 

  

Fig. 13. Comparison of the effect of using photos of actual 

details on the probability of correct recognition 

Fig. 14. Recognition of the big nut in data sets 1 

and 2, 3 and 4 

 

The results got require careful verification with many images for training and with improved CAD models. 

Another unusual result is differences in the recognition of a model with a pair of different parts (data set 1) and 

with the same data set (data set 3) (Fig. 14) 

The example of part nut_12 shows that the part was recognized worse in the data set with shneck_11 than in 

the data set with nut_12 (Fig. 15). thus, it can be concluded that not always differences in geometry can guarantee 

a high-quality definition of the detail in the image. We need additional experiments to determine the cause of this 

behavior. 

We should note it that the recognition of parts was carried out only individually, not as part of a group or 

assembly. 

 

Model effectiveness evaluation 

 

The highest recognition rate is 96 % (3, training on screenshots, similar details), the lowest is 36 %  

(2, training using photos). the overall average recognition rate for models trained in screenshots is 73.875 %. 

    

Fig. 10. Examples of recognizing data sets 5 and 6 
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The highest recognition rate (96 %) shows the model’s 

effectiveness. A large difference between the largest 

indicator and the average total (22.125 %) may indicate 

that the data is not preprocessed well enough, rather than 

that the model is ineffective. 

 

Conclusion 

 

Despite the inferior quality of models from the CAD 

program, the average recognition rates in the photo (over 

70 %), and the small amount of data in the set, the results 

of the experiments can be called successful. We confirmed 

that it is possible to recognize real details in photos, 

focusing only on the images of the CAD-editor workspace. 

This result gives grounds to argue that with competent 

training of models, creating a computer vision algorithm, 

and high-quality three-dimensional details, you can create a program that could learn only from screenshots and 

show a high-precision result of determining the object in the photo. 
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В данной статье представлен эксперимент в области компьютерного зрения, направленный на автома-

тизирование обучения нейросети распознавать промышленные объекты на примере деталей турбонасос-

ного агрегата ракетного двигателя РД-120. Для обучения нейронной сети использовались как набор дан-

ных, состоящий из фотографий уже существующих деталей, так и набор изображений из CAD-программы, 

имитирующий собой стадию проектирования требуемого изделия.  

При сравнении результатов эксперимента подтвердилась гипотеза о том, что возможно обучить си-

стемы компьютерного зрения различать еще не существующие объекты на основе скриншотов их цифро-

вых двойников (CAD-модели). Собирая необходимые данные до непосредственного производства про-

дукта, можно добиться хороших показателей распознавания даже реального объекта с простой геомет-

рией.  

В статье представлены результаты применения такого метода в сравнении с традиционным подходом 

обучения, а также рассмотрены перспективы использования данной технологии в промышленности. 

Ключевые слова: компьютерное зрение, сборочный процесс, система контроля, производство, Python, 

авиационная промышленность, Keras, аэрокосмическая промышленность, промышленные роботы, рас-

познавание объектов. 
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