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The paper proposes a new improved UniLemm algorithm (universal lemmatizer), which allows solving both 

the direct problem - constructing a word lemma, and the reverse one - constructing word forms with fixed gram-

memes according to the lemma. 

The lemmatizer is an important component of advanced artificial intelligence systems that analyze natural 

language texts. 

The task of lemmatization is to assign the initial form (lemma) to each input text word.  

This paper reduces the lemmatization problem to the classification problem. Each word form with given gram-

memes (grammatical categories) is assigned a certain class - a declension paradigm, where P paradigm is a set of 

declension rules. 

When building a classifier for the lemmatization problem, we take into account the existence of non-dictionary 

words, as well as the situation when grammemes for the word form are not specified.  

The OpenCorpora Russian language dictionary acts as a training sample in building a classification tree. When 

constructing the classification tree nodes, we take into account two important orthogonal aspects: the suffixes of 

word forms and a set of grammemes. The set of grammemes used in this work is a subset of the set of grammemes 

used in the Russian National Corpus and a superset for grammemes used in the Universal Dependencies (UD) 

notation. 

When building a classification tree, we use an original data structure based on RDR rules, which makes it 

possible to formulate not only a declension rule for a word form, but also possible exceptions. 

The UniLemm algorithm builds a combined classification tree containing suffix subtrees and grammeme sub-

trees. Suffix trees are for primary classification, while grammeme trees allow resolving homonymy. 

The final stage of the algorithm presents the final classification tree as DFA (Deterministic Final Automaton). 

The correctness and quality of the algorithm was checked both on the control sample of OpenCorpora and on 

two subcorpuses containing original texts of various subjects and styles. The algorithm has shown good results 

both in the accuracy of solving the lemmatization problem (above 90%) and in the text processing speed (250-300 

thousand words per second in single-threaded mode). 

Keywords: natural language processing, morphology, lexicon, decision tree, inflection paradigm, lemmatiza-

tion. 

 

The task of Natural Language Understanding (NLU) is one of the most important tasks of modern computer 

science. There are various approaches to its solving, ranging from fairly simple methods used in numerous bots 

that support a dialogue in a limited problem area to original algorithms, which are implemented, for example, in 

systems for translating texts from one language to another. 

The authors explore an approach based on the LRA semantics (Linguistic Rational Agents) [1]. The main idea 

of this approach is to represent the text in natural language as formulas of some logic, which would make it possible 

to effectively solve problems related to knowledge processing and logical inference. 

The implementation of text comprehension based on LRA semantics consists in constructing linguistic and 

rational agents and organizing their subsequent interaction. The idea of this approach is that both aspects of the 

text (syntactic and semantic) are extremely important for understanding the meaning, and the main problem is to 

harmonize these aspects. It is assumed that a particular text allows a single syntactic meaning that a linguistic agent 

can construct. This value can be interpreted in different ways depending on the problem being solved. Such an 

interpretation that can only be obtained based on extralinguistic knowledge is the meaning of the text. It is also 

worth noting that from the LRA point of view, a text can have several meanings depending on the rational agents 

involved in the analysis, but it always has only one meaning received by the linguistic agent [2]. 

In order to get the meaning of the text, the linguistic agent must first perform a number of standard steps for 

analyzing a text, which are aimed at its structuring and disambiguation. One of the first stages is morphological 

analysis; its purpose is to match each source text lexeme with a set of morphosyntactic attributes (grammemes) 

and a dictionary form (lemma). Both of these tasks are extremely important. Grammemes are essential for deep 

parsing. The completeness of the set of grammes is a key factor for the subsequent extraction of semantic 
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relationships between objects. Lemmatization allows the linguistic agent to abstract from complex word form 

matching rules, which simplifies the subsequent analysis stages and allows more accurate determining the meaning 

of specific words. This effect is especially strong when working with highly inflectional languages, such as Rus-

sian. Both of these problems can be solved jointly and separately. This work proposes an improved algorithm for 

solving the lemmatization problem. 

The classical statement of the lemmatization problem is as follows: to find a lemma for a given word form and 

a set of grammes (initial word form). The problem has a unique solution in this formulation. But there are problems 

associated with the need to find the appropriate set of grammes that require context analysis. In practice, a number 

of situations require to find a lemma for a word form when grammes are completely or partially unknown. In this 

situation, the solution for words that have homonyms is a set of lemmas, one for each homonym. 

The complexity of the lemmatization task also is in the fact that a living natural language develops dynamically 

and continuously, and the linguistic resources currently available do not cover it in full. Therefore, the problem of 

lemmatization of the so-called non-dictionary words arises. 

There are recent studies comparing various software modules for solving the problem of morphological anal-

ysis [3, 4, 5]. Implementations differ in a set of functional properties, a set of grammars used, and the work quality. 

Classical solutions based on dictionaries, decision trees and hidden Markov models (Pymorphy [6], TreeTagger 

[7], MyStem [8], TnT [9], etc.) are still the most popular due to their relative simplicity, it is enough high precision 

and speed. Methods based on neural networks show the highest accuracy. However, various problems associated 

with performance and the learning process prevent their widespread use for solving applied NLU problems. 

The lemmatization task in such modules is considered as a separate one, not connected in any way with the 

main analysis process. Most of the developed algorithms for solving it somehow use a certain dictionary, external 

or automatically extracted from the text corpus. The simplest dictionary has the form of a table, where each word 

is associated with its lemma. Then there is no parsing of non-dictionary words. Another popular approach is using 

prefix trees. This approach uses advantage of the morphological features of inflectional languages, namely the fact 

that the vast majority of forms are formed by modifying the existing form ending according to certain rules. It is 

assumed that words that end in the same way are parsed in the same way. This feature allows building a certain 

prefix tree (or several trees) by expanding words. These trees are typically depth-limited using various heuristics 

or hyperparameters that aim to find a sufficient suffix length needed for lemmatization. 

As it was mentioned above, most of the developed algorithms consider the lemmatization problem separately 

from the problem of morphological analysis. However, according to the authors, an effective solution of the lem-

matization problem in both given formulations can significantly simplify the problem of morphological analysis. 

This paper proposes a universal lemmatization algorithm UniLemm, which allows solving the lemmatization prob-

lem in both formulations for inflectional languages, does not involve optimizing hyperparameters for the particular 

language needs, and also makes it possible to solve the inverse problem, i.e. obtaining a form with the required 

grammemes using a lemma. It is also possible to use the algorithm in solving other problems that arise during 

morphological analysis.  

 
UniLemm algorithm. Building a classification tree 

 

Let us reduce the formulated lemmatization problem to the classification problem. Each word form can be 

assigned a certain class - a declension paradigm. The paradigm-based approach considers various word forms as 

special cases of general word-formation rules. At the same time, a specific word-formation rule shows how to 

obtain a given word form with the desired grammemes from a lemma by adding a certain suffix to the lemma stem. 

Lemmas with the same sets of rules form a paradigm. The approach has been successfully applied in various 

morphological analyzers [6, 8].  

In the framework of this work, we assume the paradigm P to be the set of declination rules. P = {R1, R2,…, Rn}. 

Each Ri rule specifies the following transformation:  

},{},{ ''
iiiii ASASR →=

 
where Si is a suffix of the original word form replaced by '

iS  suffix. After the replacement, the word form is 

transformed into a lemma. Ai are grammemes of the original word form replaced by '

iA  grammemes. As a result, 

the resulting set of grammemes represents the lemma grammemes. 

The task of lemmatization in this approach is reduced to the classification task - finding the desired paradigm 

and the number of the rule within the paradigm, with the subsequent application of this rule to the original word. 

Moreover, the rule formulation makes it possible to apply it in the reverse order, to obtain the word form from the 

lemma. We can get any word form knowing the paradigm and the rule. 

One of the approaches used to solve the classification problem is based on the building a classification tree. 

The classification tree can be based on the training sample. The training sample can be viewed as a set of records 

with fields containing input parameter data. Each record in the training sample has an indicated class of a target 

parameter. 
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Let us take a given set of input parameters. The task of the classifier is to determine the object class from this 

set with the presented values. A typical example is pattern recognition. The classifier is presented with pictures of 

objects, in response it gives out the object class: this is a “rabbit”, this is a “hare”, this is a “wolf”. In our case, the 

classifier is presented with a word form and a set of its grammemes. In response, it issues a word form class -  

a paradigm and the corresponding rule. 

An object class is a target parameter. It has a discrete type with a finite number of values. The parameter values 

are class names, also called class labels.  

Typically, the algorithm for building a decision tree belongs to the class of greedy algorithms. It recursively 

builds a binary decision tree from top to bottom starting from the root. It selects the most informative parameter 

for each node of the tree and choses its value in the node so as to split the initial sample (database records) into 

two samples; the classes are separated from each other in the best possible way in each of them. Ideally, one of the 

selections should contain records that belong to only one class. 

There are different ways to select an appropriate parameter and its value in a tree node. For example, we can 

use an entropy criterion. We reduce the uncertainty in choosing the appropriate class by minimizing the entropy. 

We use the well-known Shannon formula to calculate the entropy criterion: 

1
log 2( )

N

i ii
entropy p p

=
= − . 

The formula uses pi that are the probabilities of class occurrence calculated as the frequency of occurring 

classes in the sample. 

The task of classifying word forms has its own characteristics due to the choice of a grammeme format and how 

a training sample and a classification tree are built. Let us consider the solution of these problems in more detail. 

Gramme format  

A grammeme is a grammatical meaning, one of the grammatical category elements. For example, the Russian 

language is characterized by such grammatical categories as gender, number, case, etc. These categories can have 

specific meanings: singular, masculine, nominative case. A set of grammemes for a particular word form is repre-

sented as a binary vector; its elements take the value 1 if the word form has the corresponding grammeme, and  

0 otherwise. Such representation makes it possible to carry out set-theoretic operations on grammemes effectively. 

In general, there is no restriction on a single meaning within a grammatical category. However, the order of the 

grammemes in the vector is important. The algorithm involves working with a fixed set of categories and gram-

memes, which are known at the stage of building a training set.  

There is no generally accepted standard that states many categories and grammars in the Russian language. 

There are several grammeme annotation systems, ranging from the Russian National Corpus [10], which takes into 

account the most rare grammatical features, to the Universal Dependencies (UD) notation [11] that, on the con-

trary, is aimed at abstracting from the language details where possible.  

This paper considers the OpenCorpora format [12] as the set of grammemes since it is one of the most gram-

meme-rich formats. Since not all grammemes are of value as automatic text processing tasks, we have selected 60 

grammemes that are the most significant from the point of view of morphological and syntactic analysis tasks. The 

constructed set of grammemes is a subset of the set of grammemes used in the Russian National Corpus and a 

superset for UD grammemes, which made it possible to use any of the corpora in developing and testing the model. 

A training sample format 

We can consider the training sample represented by the language corpus as a set of pairs containing a word 

form and a declension rule. The declension rule is represented as a pair including the number of the paradigm and 

the number of the rule within the paradigm. Let us consider a training set containing some forms of the noun 

“мыло” and the verb “мыть” as an example. 

This training set demonstrates several examples of homonymy. For example, the forms of the noun “мыло” in 

the nominative and genitive case coincide with the form of the verb “wash” in the past tense and neuter gender. In 

addition, we can assess the impact of using declination paradigms. So, most verbs of the first conjugation (ending 

in “-еть”, “-ать”, “-оть”, “-ыть”, “уть” in the initial form, not including exceptions) will change similarly to the 

verb “мыть” representing one paradigm.  

An algorithm for building a classification tree  

This paper considers the algorithm that is a modification of the LemmaGen algorithm [13]. The original algo-

rithm is based on building a data structure called the Ripple Down Rule (RDR). RDR rules were originally de-

signed to compactly represent and organize contextual knowledge by representing some form of a decision tree. 

In [14], this data structure was used to solve the lemmatization problem.   

Let us consider how the RDR rules that define the classification tree are built in the presented algorithm. 

The tree nodes contain predicates defined over word suffixes and grammemes, and the tree leaves contain 

lemmatization rules. 

There are three stages in the algorithm (Fig. 1). The first stage sorts the input set. As a result, training examples 

are arranged in lexicographic order according to the inverted word form. Then, based on the sorted set of examples, 

an RDR (decision tree) is built using a recursive algorithm. The final step of the algorithm is to compress the 

resulting tree by searching and reusing indistinguishable tree vertices: 
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Table 1 

A training set based on several forms of the noun “мыло” and the verb “мыть” 
 

Lemma 
Word 

form 
Grammemes Transformation rule 

мыло мыло Noun, Inan, Neut, Nomn, Sing {,}→{,} 

мыло мыла Noun, Inan, Neut, Gent, Sing {a,Gent}→{o,Nomn} 

мыло мылу Noun, Inan, Neut, Datv, Sing {y,Datv}→{o,Nomn} 

мыло мыло Noun, Inan, Neut, Accs, Sing {,Accs}→{,Nomn} 

мыло мылом Noun, Inan, Neut, Ablt, Sing {м,Ablt}→{,Nomn} 

мыло мыле Noun, Inan, Neut, Loct, Sing {е,Loct}→{o,Nomn} 

мыть мыть Infn, Impf, Tran {,}→{,} 

мыть мыл 
Verb, Impf, Tran, Indc, Past, Sing, 

Masc  
{л,Verb, Indc, Past, Sing, Masc}→{ть,Infn} 

мыть мыла 
Verb, Impf, Tran, Indc, Past, Sing, 

Femn 
{ла,Verb, Indc, Past, Sing, Femn}→{ть,Infn} 

мыть мыло 
Verb, Impf, Tran, Indc, Past, Sing, 

Neut 
{лo,Verb, Indc, Past, Sing, Neut}→{ть,Infn} 

мыть мыли Verb, Impf, Tran, Indc, Past, Plur {ли,Verb, Indc, Past, Plur}→{ть,Infn} 
 

The purpose of the LearnRecursive function is to build RDR for a sorted set of training examples. 

There are several formal definitions of RDR. In this paper, RDR refers to rules with their syntax represented 

as a BNF definition: 

RDR ∷= IF <condition> THEN <rule> [EXCEPT <RDR_list>] 

Thus, RDR is an IF-THEN-EXCEPT rule, where condition is a predicate and rule is a classification rule.  

The RDR structure can also contain a non-empty list of exception rules that refine the original rule. Thus, RDRs 

have much in common with decision trees: the rules and their exceptions are ordered, the first rule whose condition 

is met and none of the conditions of the exception rules is met causes the corresponding rule classification rule  

(in this case, lemmatization) to work. In general, RDR represents a decision tree that is not binary, but can be 

reduced to binary by converting the set of exception predicates into a series of one-vs-all predicates. 

The proposed algorithm is a recursive RDR construction procedure that splits the current training set into sub-

sets according to some predicate. A predicate can be defined either over a suffix of a word form or over gram-

memes. Being rule, both RDR variants contain the transformation rule most frequently encountered in the current 

training set. After forming the predicate and the rule, the algorithm recursively continues its work on the obtained 

subsets as long as it is possible to construct the corresponding predicate. 

The algorithm starts by building a subtree of suffixes. The main idea is that each rule (and therefore subtree) 

combines the words of the original training set that end in some common suffix. The search for a common suffix 

takes into account the sorting of the original set. The training set is effectively divided into subsets by the symbol 

preceding the common suffix. The separa-

tion procedure is repeated until only the 

same words remain in the subset (in the case 

of homonymy). Then the algorithm pro-

ceeds to building a subtree of grammemes. 

Otherwise, the procedure is activated recur-

sively on the resulting subset. 

The algorithm for building a grammeme 

tree is similar to the classical algorithm for 

building classification trees. First, we find 

the grammeme with the lowest entropy 

value. If several grammemes correspond to a division with the same entropy, then we choose the first grammeme 

in order. The order of the grammemes in the vector is important: grammemes must be arranged according to some 

linguistic intuition as to which ones play the biggest role in resolving homonymy. For example, for the Russian 

language, it is more logical to first determine the part of speech and then ask more specific questions about number, 

case, gender. This ordering is not necessary, but allows building trees with fewer nodes and a more human-like 

decision process. In practice, the situation when there are two equivalent features according to the entropy criterion 

is quite rare (less than 5% of all words for the Russian language). The constructed predicate allows us to divide 

 
 

Fig. 1. The main function of the UniLemm algorithm 
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the training set into subsets and to apply the algorithm to each of them recursively. The stopping rules allow 

completing the tree building in the tree leaves. 

Summarizing the above, we note that the UniLemm algorithm builds a combined classification tree containing 

suffix subtrees and grammeme subtrees. Suffix trees are for primary classification, while grammeme trees allow 

resolution of homonymy if any. 

At the last stage, the built combined tree is compressed to eliminate possible redundancy. 

The resulting tree can be represented as a DFA (Deterministic Final Automaton) under the following  

conditions: 

• each node in the suffix tree is considered a separate DFA state; 

• each grammeme tree as a whole is considered a separate DFA state;  

• transformation rules are considered separate DFA end states. 

The constructed DFA automaton can be transformed into a similar DAFSA automaton (Deterministic Acyclic 

Finite State Automaton), which has a minimum number of states. Such automaton can be considered as the end 

result of the learning algorithm. 
 

Experimental results 
 

We used the OpenCorpora dictionary to build the classification tree and the corresponding automaton.  

As usual, a part of the vocabulary was used for learning, the other part for control. We have obtained results for 

three training options for 50, 80 and 90 percent of the vocabulary. 

There is another interesting case when a control sample is not a dictionary but a set of marked up texts, where 

the word lemmas are known as in a dictionary. For such experiments, we selected two publicly available text 

corpora: 

OpenCorpora subcorpus with removed homonymy. Ii includes texts of various subjects and styles; 

UD subcorpus that includes Wikipedia articles. The grammeme format was converted to the OpenCorpora 

format. 

The experimental results are shown in Table 2.  

Table 2 

Test results 
 

Sample 

number 

Used training set 

volume (%) 

Accuracy on the remaining 

dictionary subset (%) 

OpenCorpora 

accuracy (%) 
UD accuracy (%) 

1 50 93.82 89.12 86.10 

2 80 95.81 91.50 89.71 

3 90 98.50 94.61 93.45 
 

Obviously, the algorithm shows sufficient accuracy for practical use on all control samples.  

As an example, let us consider the result of the lemmatizer work on non-dictionary words using Academician 

Shcherba’s famous phrase: “Глокая куздра штеко будланула бокра и курдячит бокрёнка”. In the case when 

there are no specified grammemes for these words, the lemmatizer was able to unambiguously determine lemmas 

for all words, except for the words “глокая” and “штеко”. The lemmatizer has created two equivalent variants  

for these words; they are shown in the Lemma 1 and Lemma 2 columns of Table 3. 

When grammemes are partially specified for word forms (it is enough to specify the part of speech), ambigui-

ties are eliminated, the lemmatizer works correctly on all non-dictionary words in this example.   

Table 3 

Lemmatizer result for the phrase «Глокая куздра штеко будланула бокра и курдячит бокрёнка» 
 

Original word Lemma 1 Lemma 2 

глокая глокать | INFN, Impf, Tran глокая | GRND, Impf, Tran, Pres 

куздра куздра | NOUN, Femn, Anim  

штеко штеко | NOUN, Neut, Inan, Nomn, Sing штеко | ADVB 

будланула будлануть | INFN, Petf, Tran  

бокра бокр | NOUN, Masc, Inan, Nomn, Sing  

и и | CONJ  

кудрячит кудрячить | INFN, Impf, Tran  

бокрёнка бокрёнок | NOUN, Masc, Inan, Nomn, Sing  
 

A qualitative analysis of lemmatization errors has shown that most errors are due to proper names and abbre-

viations, as well as inaccuracies in the markup itself (for example, violation of own rules for assigning infinitives 
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as lemmas for participles and gerunds). In addition, there were found errors in reducing adverbs to adjectives and 

restoring abbreviations. These and other corpora features were not taken into account when building the original 

training set. 

The accuracy of the UniLemm algorithm is comparable to other lemmatization algorithms [3, 4, 5]. The aver-

age parsing speed was 250-300 thousand words per second in a single-threaded mode. Comparative studies show 

an average speed of tens of thousands of words per second for TreeTagger, TnT, etc. [5, 15]. However, a direct 

comparison with other morphological analyzers is not entirely correct due to using different packages and hard-

ware.  

 

Conclusion 

 

The UniLemm algorithm was developed as a part of this work. The algorithm accuracy and speed is at least at 

the level of other widely used tools that solve the lemmatization problem. The trained model can be used not only 

for lemmatization, but also for inflecting words, as well as generating hypotheses for morphological parsing. 

Future areas of research include: 

• improving the accuracy of the model for the Russian language taking into account the peculiarities of the 

training dictionary and the target format of morphological markup, 

• learning similar models for other inflectional languages, 

• developing an algorithm for morphological analysis based on the obtained model. 

We plan using the presented model in the implementation of the lexical component of the text analysis system 

based on LRA semantics [1] as a basis for morphological analysis and synthesis. 
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В работе предлагается новый улучшенный алгоритм UniLemm (универсальный лемматизатор), кото-

рый позволяет решать как прямую задачу – построение леммы слова, так и обратную– построение по 

лемме словоформ с фиксированными граммемами.  

Лемматизатор является важным компонентом продвинутых систем искусственного интеллекта, зани-

мающихся анализом текстов на естественном языке. 

Задача лемматизации заключается в приписывании каждому слову входного текста его начальной 

формы (леммы). 

В работе задача лемматизации сводится к задаче классификации. Каждой словоформе с заданными 

граммемами (грамматическими категориями) приписывается некоторый класс – парадигма склонения, где 

под парадигмой P понимается множество правил склонения. 

При построении классификатора для задачи лемматизации учитывается существование несловарных 

слов, а также ситуация, когда граммемы для словоформы не заданы.  

Для построения дерева классификации используется обучающая выборка, роль которой играет словарь 

русского языка OpenCorpora. При построении узлов дерева классификации учитываются два важных ор-

тогональных аспекта – суффиксы словоформ и множество граммем. Применяемое в работе множество 

граммем является подмножеством набора граммем, используемого в национальном корпусе русского 

языка, и надмножеством для граммем, используемых в нотации Universal Dependencies (UD). 

При построении дерева классификации используется оригинальная структура данных на основе RDR-

правил, позволяющих формулировать не только правило склонения для словоформы, но и возможные ис-

ключения.  

Алгоритм UniLemm строит комбинированное дерево классификации, содержащее поддеревья суффик-

сов и поддеревья граммем. Суффиксные деревья предназначены для первичной классификации, а деревья 

граммем позволяют разрешать омонимию. 

На заключительном этапе алгоритма итоговое дерево классификации представляется в виде детерми-

нированного автомата DFA (Deterministic Final Automaton).  

Проверка корректности и качества алгоритма проводилась как на контрольной выборке OpenCorpora, 

так и на двух подкорпусах, содержащих оригинальные тексты различной тематики и стилистики. Алго-

ритм показал хорошие результаты b по точности решения задачи лемматизации (выше 90%), и по скорости 

обработки текстов (250-300 тысяч слов в секунду в однопоточном режиме). 

Ключевые слова: обработка естественного языка, морфология, лексикон, дерево решений, парадигма 

склонения, лемматизация. 
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