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The paper considers solving the problem of localization of players in virtual soccer. The authors use the Ro-

boCup 2D Soccer Simulation League international competition platform as a medium for conducting experiments. 

The location information of objects in the field is important for deciding–it is necessary to find players in condi-

tions of both complete and insufficient information. Using previous states and predicting actions for recently hid-

den objects can improve the accuracy of the projected growth of the situation in the field. 

The authors reviewed existing solutions for the localization of players and developed a new algorithm.  

If the initial information suffices to calculate the player's coordinates, we use the Kalman filter, and if the infor-

mation is insufficient, we use the inertial navigation algorithm based on known previous states. The paper describes 

an approach to predicting the players' location that has recently disappeared from view, considers the mathematical 

model of the algorithm, and designs the architecture of the software solution. Several actual players in the virtual 

soccer environment tested the developed solution. We show the results as graphs of mathematical expectation and 

dispersion and confirm the predictability of the location of recently disappeared objects, calculating the coordinates 

of the player in various conditions.  

The obtained results determine the directions for further research on forecasting based not only on previous 

states but also on the logic of players' decisions. The next step is to integrate the developed program into the 

decision-making system for joint verification during the competition. 

Keywords: intelligent agents, virtual soccer, multi-agent systems, positioning under uncertainty, Kalman filter, 

inertial navigation. 
 

Currently, artificial intelligence is surging. Some platforms are designed for scientific research in the field of 

artificial intelligence (for example, Gym OpenAI, GVGAI), others are for competitions (RoboCup 2D Soccer 

Simulation League Champion [1], RoboCup Rescue Simulation [2]). Simulation in virtual soccer is used for re-

search, development, and comparison of multi-agent systems, to simplify this process, it is possible to use Soccer 

Simulation [3], which provides the suitable tools.  

The environment of virtual soccer is very dynamic and can well simulate the conditions of the real world.  

In particular, they assumed full autonomy of the player management programs and the provision of visual and 

audio information to the players with a predetermined error and distance restrictions. Various methods are used to 

control and position players: using decision trees, which form options for further actions based on the current state 

(tree node) and input data [4, 5], using random finite sets [4, 6], the Monte Carlo method [4, 7], fuzzy automata 

[8], probabilistic automata [9], convolutional neural networks [1, 4, 10].  

Decision-making can be based only on the current state of the world or on several previous states. At the same 

time, an agent that considers the previous states will act more efficiently and therefore win against a player who 

decides to consider only one state. Planning actions based on the change history in the situation is important when 

creating intelligent agents. Action planning involves predicting changes in the field situation, considering the ac-

tions that can be performed in the situation created. The prediction can be carried out based on both incoming data 

and change, along with updated information at each clock cycle [7], and the formed model with its gradual refine-

ment [11]. We consider information about visible objects in both cases, but for objects that were recently in vision 

and then disappeared from it, the behavior is unknown. Considering their behavior will significantly enrich the 

model and improve the accuracy of predicting the development of the situation in the field.  

We should note that in the conditions of virtual soccer, the coordinates of the player are also unknown – we 

calculate them based on the visible flags placed around and on the playing field. This problem is not always solved 

unambiguously since the information is provided to the control program with some error [12]. 
 

Problems' Solutions 
 

The virtual soccer platform provides noise for the data arriving to players from the visual sensor, which imposes 

restrictions on how to solve the problem. We can apply the algorithms specified below. 

1. Navigate by the nearest flag and the farthest line. 

Calculations are performed based on the trigonometric formulas-the static point in the field closest to the agent 

is selected (the midfield, the team's goal, the four areas in front of the goal, to the right and left of them, the area 
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directly in front of the goal) and the far visible line of the 

field boundary (Fig. 1). Using the angle calculated by the for-

mula: β = –sin(α)(90 –|α|), where α – the angle at which the 

line is visible, and the available absolute coordinates of the 

flag, the agent calculates its real coordinates [13]: 

(px, py) = (fx, fy) – π(fr, fφ + (90 + β)), where fx, fy, fr, fφ – 

the x and y coordinates of the flag, as well as the distance to 

it and the angle at which the flag is visible, respectively;  

π is the function of converting polar coordinates to Cartesian 

coordinates.: 

π(r, φ) = (rcos(φ), rsin(φ)). 

2. Navigate by the two nearest flags and the farthest line. 

Calculations for this method are based on trigonometric 

formulas using the two static points closest to the agent  

in the field (the midfield, the team goal, the four areas in front 

of the goal, to the right and left of them, the area directly in 

front of the goal) and the far line (Fig. 2). The distance to the 

flag and its coordinates define a circle of possible positions, 

and the intersection of the two circles determines the  

player's position. The distance between flags (f, g): 

2 2( ) ( ) .d gx fx gy fy= − + −  

Calculating the player absolute coordinates [13]: 

(px, py) = (px’ – h sign sin(α), py’+ h sign cos(α)),  

where (px’, py’) = (fx + a cos (α), fy + a sin (α)),  

sin (α) = 
y

d
, cos(α) = 

x

d
  

3. Navigation using the particle filter. 

The particle filter is a method for determining the abso-

lute coordinates of a player, according to which a set of hy-

potheses about their current values is created to estimate the 

coordinates. The algorithm for determining the absolute co-

ordinates based on the particle filter includes the following 

steps. 

Step 1. Initialization-getting information about the first step of the work, while generating hypotheses ran-

domly. 

Step 2. Prediction-guess the player's location based on the information received from the server. 

Step 3. Correction-calculation of the weight coefficients, and before this calculation, the particles are filtered 

out by calculating the upper and lower bounds of the hypotheses (particles that are not included in the range are 

removed) and re-sampling – removing hypotheses with low weight and duplicating hypotheses with high weight. 

Step 4. State estimation-calculation of absolute coordinates as the weighted sum of all particles' states [13, 14]. 

4. Navigation using the Kalman filter. 

The method allows you to get an estimate of the object's state vector (in this case, the player's coordinates) 

based on a series of noisy measurements. It implemented the solution in several steps. 

Step 1. Post-information analysis received from the visual sensor (information from the server). If you have 

saved data, you can skip the parsing step and focus on the analysis. 

Step 2. Cyclic processing of all possible pairs-iterating over all pairs of visible flags and calculating the absolute 

coordinates from these flags. 

Step 3. Calculation of the sensor error variance – the primary stage at which the quality of this method is 

determined: 
2( max min)2
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−
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+
, where rmax and rmin are the maximum and minimum possible distance val-

ues; 𝜎^2 is the error dispersion. 

Step 4. Update the value of the Kalman gain (K), considering the resulting dispersion. The coefficient value 

must provide the maximum proximity of the calculated optimal values of the absolute coordinates to their true 

values: 
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Step 5. Correction using the Kalman coefficient of the estimated value of the absolute coordinates of the agent 

in this iteration: xi+1= xi*K+(1 – K)*(xi+ Δx), yi+1 = yi*K+(1– K)*(yi + Δy), where Δx, Δy is the expected change in 

coordinates. 

 
 

Fig. 1. The feature algorithm «Navigation  

by the nearest flag and the farthest line» 

 

 
 

Fig. 2. The feature algorithm «Navigation  

by the two nearest flags and the farthest line» 
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Thus, the real coordinates of the player are calculated [13–15]. 

5. Monte Carlo method and Data aggregation. 

The method is based on a combination of Monte Carlo search and data aggregation (MCSDA) [7] to adapt the 

agent's actions to the opposing team's game strategies. Using a simple domain representation, the algorithm is 

trained in a controlled way on an initial data set comprising several simulations of actual games, similar to [16]. 

The method allows you to control navigation and helps in deciding in the field. The algorithm uses a set of state-

action pairs as input. Then the classifier ^π is trained, and at each iteration, the algorithm expands its data set ~π 

by generating the state st at each time step, with the expected value maximized by the function Vp (st, a). After the 

entire cycle, the aggregated data set is used to train a new classifier ~π (Fig. 3). 
 

 

6. Random finite sets method  

The method provides the map construction of robot movements using random finite sets (RFS) [6]. It is applied 

to the assessment problem of the teammate and opponent position in the SPL League and comprises two steps. 

Step 1. Prediction-creating hypotheses about the appearance of new obstacles for the next cycle of work. 

Step 2. Update-calculation of the discoverability of new obstacles at a given point, after which there are the 

operations of pruning and merging elements (Gaussians that are determined close enough, through the Mahalano-

bis distance threshold, are combined into one). 

Figure 4 shows the pseudocode of the algorithm. 

This algorithm is used to calculate obstacle maps in visible space. To get the position of an object in the field, 

you need to estimate the weight of each element. The mean vector sets if and added to the vector representing  

the current map (Figure 5). 

7. The concept of constructing the intelligent real-time agents based on the model of advanced iterative  

planning. 

For decision-making by players, the concept of constructing a model of advanced iterative planning  

is used [10]. The steps are generalized since because of the exponential growth of the trees of possible events, 

accurate prediction is not possible. The calculation cycle includes the following steps. 

Step 1. Getting sensory information from the perception subsystem. 

Step 2. Assess the situation. 

Step 3. Predicting the situation. 

Step 4. Planning the actions. 

Step 5. Issuing commands to the executive subsystem to perform actions. 

Figure 6 shows the pseudocode of the method. 

The presented algorithms and methods can be compared according to the following criteria: 

- the volume of information stored in the algorithm's memory; 

- algorithm goal; 

- type of algorithm; 

- computational error of locations (in virtual soccer, measured in meters). 

begin 

  Training of the classifier P(ˆπ) on the expert data set De.  

 P1 ← classifier training (). 

  Initialization D ←De. 

  for i = 1 to N do 

   Initialization s0 ←init(D. 

      for t = 1 to T do 

Getting st states from the previous classifier state Pi−1(st−1). 

        A ← select possible actions from st (if necessary). 

      foreach a ∈ A do 

       Performing K simulations using the Monte Carlo method of length K to evaluate states 

       Vp(st, a). 

      end 

      at ← arg max aVp(st, a). 

      D ← D ∪{st, at}. 

    End 

   Training the Pti(˜πi) classifier on the D dataset. 

  end 

  return array Pt 

end 

Fig. 3. Pseudocode of the MCSDA algorithm 
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// Forecast Stage 

for i = 1 to Jk – 1 do 

  Calculation of new covariances Koi ←Covariance (KoPi – 1, Pi – 1 + Q, wi) 

end for 

Predicting a new obstacle map Mk ← generateNewGausian(Zk – 1, Xk – 1) 

//Update stage (refinements) 

for i =1 to Jk|k – 1 do 

  Calculating the probability of obstacle ( )i

DP . 

update wi based on the new probability Pi and previous states 

end for 

N = 1 

for each z in Zk 

  for i = 1 to Jk|k – 1 do 

    Calculation H, Si and Ki 

    Calculation KoN + i using the previous state of the Bayesian filter 

    Getting the probability PN + I from the previous state 

    Calculation of the correction coefficient ti 

  end for 

  for i = 1 to Jk|k – 1 do 

    Calculating new states for the obstacle map wN + i using ti 

  end for 

Update N 

end for 

Jk = N 

Refinement of the predicted obstacle map vk using Koi, Pi, wi cropping (M) 

 

Fig. 4. Pseudocode of the RFS algorithm 

 

Mk = [] 

for i = 1 to Jk do 

  if wk > thrld then  

    Mk = [MkKok] 

  end if 

end for 

Fig. 5. Getting the location after using the RFS algorithm 

 

AFR = AFR0; PH = PH0; Actcur = Act0; {Actnext} = {Actnext}0; 

While true do 

  PCP ← perform Perception (AFR); 

  St ← assess the situation (PH, PCP, AFR); 

  if ({CEP} = ∅) 

    if (Actcur is not complete)) 

      continue Execution (Actcur); 

      AFR ← plan Mental Activity(St, Actnext); 

      St+n ← forecastSituation(St, n, AFR); 

      {Actnext} ← plan External Activity(St + n, Actnext, AFR); 

      AFR ← plan Mental Activity(St, {Actnext}); 

    else 

      AFR ← plan Mental Activity(St); 

      Actcur ← select External Action(Actnext, AFR); 

      Actnext ← form Set Of Common Data(AFR); 

  else 

    Td ← identify Time Limit({CEP}, St); 

    select The Reraction; 

end while 

 

Fig. 6. Pseudocode of the method «The concept of building intelligent  

actual-time agents based on the model of advanced iterative planning» 



Software Journal: Theory and Applications                     2, 2021 

 5 

The volume of information stored in the algorithm's memory implies a comparison based on: a calculation 

based on the data of one or more clock cycles of changes in the surrounding world. This volume affects the number 

of factors used when planning actions. 

Using only the current state of the world – using information only about the current clock cycle in calculations. 

Accounting for each new state of the world – using each new operating cycle for calculations and correcting 

the information obtained by using information about the previous operating cycle, starting from the first. 

The algorithm type determines the fundamental principle of operation, on which the speed and accuracy de-

pend. 

The goal of the algorithm - different algorithms are used for different goals. Therefore, the definition of the 

primary goal, and as a result, the output data, is important for the correct integration into the architecture of the 

problem solution. 

Action assumptions and decision-making – based on the output data of the algorithm, decisions are made about 

the further actions of the player. 

Location detection – based on the output data, it is possible to determine the coordinates of the current player, 

as well as find other objects relative to it. 

The computational error of the location in the calculation.  

The table shows a comparison among algorithms. 

 

The comparison of analogs. 

 

 

Methods that use only the operating cycle are faster than methods that use previous states of the world, but 

they have less ability to predict future states. The concept of constructing the intelligent actual-time agents based 

on the model of advanced iterative planning considers information starting from the first step of work, while it is 

possible to plan actions, and based on this, to predict the actions of agents, but the algorithm does not calculate 

coordinates. Navigation using the particle filter [13] demonstrates the highest calculation accuracy among all the 

presented algorithms, but at the same time the calculation takes the most time. The navigation methods using  

the Kalman filter, MCSDA, and RFC correspond to all the specified parameters, but their application depends  

on the problem and the available data. 

The goal of this paper is to calculate the locations of objects, so the MCSDA algorithm will be excluded from 

consideration since it decides and navigates based on the already calculated locations of objects. The RFS method 

will be excluded from further consideration, since it is based on an obstacle map to get the location, and construct-

ing this map for each player who has disappeared from consideration is an extremely resource-intensive problem. 

Let's build a new algorithm for determining the coordinates of a player, including considering the prediction 

of the location of players who were recently per visual field, and then disappeared from it, based on the Kalman 

filter. 

Criteria 

The volume of infor-

mation stored in 

memory 

The goal of the 

algorithm 

The type of the 

algorithm 

The computational 

error of  

the location  

(meters) 

The concept of constructing 

intelligent actual-time agents 

based on the model of  

advanced iterative planning 

Accounting for each 

new state of the world 

Action assump-

tions and deci-

sion-making 

Not probabilistic Does not calculate 

the location 

Navigate to the nearest flag 

and the farthest line 

Using only the cur-

rent state of the world 

Identification  

of position 

Not probabilistic 0.25 

Navigate by the two nearest 

flags of the farthest line 

Using only the cur-

rent state of the world 

Identification  

of position 

Not probabilistic 1.02 

Navigation using the Kal-

man filter 

Accounting for each 

new state of the world 

Identification  

of position 

Probabilistic 0.29 

Navigation using a particle 

filter 

Accounting for each 

new state of the world 

Identification  

of position 

Probabilistic 0.10 

MCSDA method Accounting for each 

new state of the world 

Action assump-

tions and deci-

sion-making 

Not probabilistic Does not calculate 

the location 

RFS method Accounting for each 

new state of the world 

Identification  

of position 

Probabilistic 0.20 
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The Mathematical Model 

 

Let's plan the problem as a mathematical model: 

M = (I, P, C, F, O), 

where I is the input data coming from the server. This data contains information about visible static (flags, lines, 

goals) and dynamic (ball, other players) objects in the field. I = {<f, l, g, b, a>}, where f is the set of received 

visible flags, l is the set of received visible lines, g is the set of visible goal flags, b is the set of ball positions 

consisting of a single element, and a is the set of visible agents.  

P:I → C – the function of processing input data and calculating the coordinates of the agent, the coordinates 

of visible objects for the agent. 

С = P(I) = {<k>} – calculation of coordinates for dynamic objects of a given game cycle, where k is the set of 

coordinates (x, y) for each dynamic object. 

F:C → O – a data analysis function that performs a prediction using data about the current state of the world 

and the previous calculated states. 

O = F(C) = {<k, p>} – the output data contains information about the location of visible objects for the current 

clock cycle and a forecast of actions for objects that have recently disappeared from the program's field of view.  

k is the calculated coordinates for dynamic objects of the current game cycle, p is the action assumptions for 

objects that have disappeared from view, the assumption about the further movement of these objects. 

Example of input data for the virtual soccer platform Soccer Simulation [3, 4]: 

Flags (f) – reference objects placed in the field for calculating coordinates: 
{ 

‘f b l 20 dist’: 43.8,  

‘f b l 20 angle’: 10, 

…} 

Lines (l) – reference objects placed around the field for calculating coordinates: 
{  

‘l b dist’: 43.8,  

‘f b l 20 angle’: -41, 

…} 

Gate (g) - reference objects placed in the field to identify different parts of the gate and calculate coordinates: 
{  

‘g r dist’: 100,  

‘g r angle’: -44, 

…} 

The ball (b) is a dynamic object moving around the field. Based on the received information, it is possible to 

calculate the location of the ball: 
{  

‘b dist’: 33.1,  

‘b angle’: 2, 

…} 

Visible players (a) - dynamic objects moving around the field. Based on the information received, it is possible 

to calculate the location of other players: 
{  

‘p "HELIOS2017" 2 dist’: 33.1,  

‘p "HELIOS2017" 2 angle 

’: -7, 

…} 

Figure 7 shows an example of an internal representation of the generated data based on the information received 

from the server. 

Information about the player at number 1, where x and y are the calculated coordinates, absX and absY are the 

actual coordinates of the player, the angle is the orientation of the player in the field, speedX and speedY are the 

speed of the player at the corresponding coordinates (k is the calculated coordinates for the dynamic objects of the 

current game cycle): 
x = -46.77 

y = -5.88 

absX = -47.49 

absY = -5.12 

angle = 2.28(radian) 

speedX = 0.72 

speedY = 0.44 

Information about visible players 2 and 3, where viewPlayer is an array of names of visible players, mapPlayer 

contains a named array of visible players with a calculated location, while x, y are the calculated coordinates of 

the player, the angle is the orientation of the player on the field (k is the calculated coordinates for dynamic objects 

of the current game cycle): 



Software Journal: Theory and Applications                     2, 2021 

 7 

otherPlayers.viewPlayer = ['b dist', 'p "HELIOS2017" 2', 'p "HELIOS2017" 3'] 

otherPlayers.mapPlayer = { 

 ‘p "HELIOS2017" 2’: { 

  x: -27.53, 

  y: 3.18, 

  angle: -48 

 }, 

 ‘p "HELIOS2017" 3’: { 

  x: -28.51, 

  y: -1.77, 

  angle: -60 

 } 

} 

The action assumptions for objects that have disappeared from view (in this case, player 4), where x and y are 

the predicted coordinates, before and before are the calculated coordinates of the player in the previous step, the 

angle is the orientation of the player on the field, predictTick is the number of the predicted clock cycle (p is the 

forecast of actions for objects that have disappeared from view): 
[{ 

 ‘p "HELIOS2017" 4’: { 

  x: -28.03, 

  y: 8.02, 

  beforeX: -27.53, 

  beforeY: 7.18, 

  angle: -51, 

  predictTick: 1 

 } 

}] 
 

Program Architecture 
 

The structure of calculating the location of visible objects and constructing a forecast for objects that have 

disappeared from view includes the following sequence of actions: 

- processing information about the current operating cycle to get the coordinates of visible dynamic objects; 

- interaction with the state store to use information about previous operating cycles; 

- predicting movement for dynamic * objects that have recently disappeared from view; 

- saving information about the current state. 

 
 

Fig. 7. Illustration, for example, of generated data based on the information received from the server 
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We can consider this sequence of actions as a basic set of architecture components (Fig. 8). Here, the compo-

nents include specific modules: 

- the processing component of the information received from the sensor receives and processes the infor-

mation, as well as calculates the coordinates for all visible objects using the Kalman filter; 

- the component of interaction with the storage of information about previous states performs the refinement 

of the agent's location when there is insufficient information from the server, the determination of objects that have 

recently disappeared from view, and the refinement of information about the actions of agents that have disap-

peared from view; 

- the movement prediction component analyzes objects that have disappeared from view, the duration of 

their stay per visual field of the current object, and performs forecasting for objects that have disappeared from 

view; 

- the component for saving information about the operating cycle saves data about the current game data and 

deletes information about clock cycles that are no longer included in a fixed time period. 

 
 

Fig. 8. Application architecture 
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Based on the model of the control program, we implement an algorithm for determining the coordinates of 
objects in the field using the Kalman filter and building an estimate for objects that have recently disappeared from 
view. 

Step 1. Parsing and analyzing the information received from the server. 
Step 2. If there are over two visible flags, then step 3, otherwise, the module for interaction with the information 

storage requests the last two states (operating cycles) and calculates the new location based on the coordinates, 
direction of movement, and speed. If the step is repeated for several bars of the game, then you must perform turns 
of the head or the complete body to get per visual field of at least two flags to clarify your location. 

Step 3. The coordinates are calculated using the Kalman filter algorithm [13]. The correction is carried out 
according to the formulas: 

xi+1= xi*K+(1 – K)*(xi+ cos (α)*speedX), 
yi+1 = yi*K+(1 – K)*(yi+ sin (α)*speedY), 
where α is the direction of the player's body (in radians), speedX, speedY – the speed of movement along with 

the x and y coordinates, respectively. 
Step 4. After determining the coordinates of the current player, the algorithm calculates the coordinates of the 

visible players by determining the coordinates of the three flags. 
Step 5. Then the analysis of the players who disappeared from view and the duration of their stay per visual 

field of the current player is performed. If the player has been per visual field for two bars or more, then it is 
included in the set for which it performed the prediction. 

Step 6. After receiving the array of analysis data, it predicted the new coordinates based on the last two states, 
from which the last known location, direction of movement, and speed of the object are determined. 

Here are some examples of calculations. 
1. After converting the input data, the information about the visible flags is an array of objects of the form: 
[{ 

‘name’: ‘f b l 20 dist’ 

 ‘dist’: 43.8,  

‘ angle’: 10, 

}, …] 

2. If the visible flags are less than two, then the basis for calculating the last two states is the calculation of 
the coordinates: 

firstCoordVal.x = -9.01, firstCoordVal.y = 28.27 

secondCoordVal.x = -8.42, secondCoordVal.y = 28.61 

radian = 3.80 

speedX = 0.59 

speedY = -0.34 

averageX = firstCoordVal.x + speedX * cos(radian) = -9.47 

averageY = firstCoordVal.y + speedY * sin(radian) = 28.48 

3. If there are over two visible flags, the coordinates of the two flags are calculated based on the received data 
about the flags: 

[{ 

‘name’: ‘f b l 20 dist’ 

 ‘dist’: 43.8,  

‘ angle’: 10, 

}, …] 

All possible pairs are cyclically iterated over, then the average for the corresponding coordinates is calculated: 
averageX: -46.71, averageY: -6.64  

4. Calculation of the error variance: 
distanceMax = 111.0, distanceMix = 12.6 

variance = ((distanceMax - distanceMix) ** 2) / 12 = ((111.0 – 12.6)^2)/12 = 806.88 

5. Updating the Kalman coefficient: 
varianceLast = 805.24 

kalman = (varianceLast) / (varianceLast + variance) = 805.24/(805.24+806.88) = 0.4994 

6. Correction using the Kalman coefficient: 
speedX = 0.72, speedY = 0.44, radian = 2.29, coordLast.x = -46.36,  

coordLast.y = -5.45 

x = averageX * kalman + (1 - kalman) * (coordLast.x + speedX * cos(radian)) = 

= -46.70 * 0.4994 + (1 - 0.4994) * (-46.35 + 0.72 * 2.29) = -46.77 

y = averageY * kalman + (1 - kalman) * (coordLast.y + speedY *sin(radian)) =  

= -6.64 * 0.4994 + (1 - 0.4994) * (-5.45 + 0.44 * 2.29) = -5.87 

7. Next, we determine the coordinates of the visible players by three flags, the location of the current player 
always replaces one flag. Sample data: 

‘p "HELIOS2017" 2 dist’: { 

 x: -27.53, 

  y: 3.18, 

  angle: -48 

} 
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8. The analysis of the players who disappeared from view is performed, after which a list of objects that 

disappeared from view is obtained: 
['p "HELIOS2017" 7 dist', 'p "HELIOS2017" 4 dist', 'p "Oxsy" 1 dist'] 

9. We perform the prediction after getting the last two states for the disappeared objects: 
radian = 53.32 

metPos[length-2].x = -25.63, metPos[length-2].y = -21.49 

metPos[length-1].x = -27.34, metPos[length-1].y = -21.78 

Based on this data, we get the object's speed: 
speedX: 1.71, speedY: 0.29 

Then the prediction: 
predictX = metPos[length-1].x + speedX * cos(radian) = -27.34 + 1.71 * cos(53.32) =  

= -29.05 

predictY = metPos[length-1].y + speedY * sin(radian) = -21.78 +0.29 * sin(53.32) =  

=-21.75 

 

Experimental Results 

 

For experimental research and comparative analysis of the proposed solution, they have developed a program 

in Python that implements the following functions:  

- reading information about the game from the game protocol file and converting it to a format suitable for 

further work; the protocol file stores information about the actual state of the world for each operating cycle of the 

game and the data received by the players; 

- calculation based on the transformed player location data; 

- calculating the location of visible 

dynamic objects at the time point; 

- analysis of objects that disap-

peared into the current operating cycle 

and prediction of their location; 

- displaying the received data. 

If there is enough information, i.e. 

there are over two visible flags, then the 

current player's location is determined 

using the Kalman filter [3, 14, 15]. In the 

conditions of insufficient flags, we use 

the algorithm for determining the loca-

tion using the previous states according 

to the principle of inertial navigation 

(Fig. 9). 

Forecasting comprises two stages: 

- determining the list of disappeared 

objects; 

- predicting the location of disap-

peared objects (Fig. 10). 

Data for experiments are in [17]. In 

the middle of the experiments, it was 

found out that the proposed solution best 

predicts the location for objects located 

at a distance of two to five meters from 

the prediction start point, while the pre-

dictions can be considered valid for only 

ten cycles of the game (Fig. 11-14). The 

figures on the ordinate axis show the er-

ror of predicting new coordinates de-

pending on the actual coordinates of the 

player (10, 12 – the average calculation 

error, 11, 13 – the calculation error 

standard deviation), on the abscissa axis 

are the numbers of the predicted clock 

cycles from the moment the player dis-

appears from the field of view.  

 
 

Fig. 9. Activity diagram for the inertial navigation algorithm 
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The error of predicting coordinates increases with the duration of the forecast, which is a consequence of the 

high dynamism of the game. For players moving at high speed, the quality of the forecast decreases. So, for objects 

those are over five meters from the beginning of the prediction point, the discrepancy in the accuracy of the pre- 

 
 

Fig. 10. Activity diagram for the algorithm for predicting the location of objects  

that have disappeared from view 
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diction increases rapidly. This is because the average value of the player's movement for 10 cycles of the game 

varies from 1 to 4 m. 
 

 

This case shows graphs for the game helios2017-vs-oxsy2017 from the storage, but similarly graphs were 

obtained for games between teams: oxsy2017-vs-hfutengine2017, oxsy2017-vs-helios2016. 

 

Conclusion 

 

The paper describes the solution to the problem of finding the location of virtual soccer players, including those 

who have disappeared from view. The last two known states of the player became the basis for forecasting. Based 

on the current position, the velocity vectors are also the basis for the forecast. The accuracy of the forecast is 

maximum when the player's position changes from 2 to 5 meters, at the minimum and maximum speeds, the 

average error increases rapidly. This is because the player's position changes from 2 to 5 meters. As a development, 

we proposed not only to model the coordinates of the player but also to analyze the situation in the field and predict 

the motives we perform for which this or that action. This may allow you to increase the accuracy of the forecast. 

We can use the developed program to analyze the situation in the field. In with decision-making systems, for 

example in [13], for processing incoming data. The next step is to check the operation of this system during the 

competition together with the decision-making systems. 
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Статья посвящена решению задачи определения местоположения игроков в виртуальном футболе.  

В качестве среды для проведения экспериментов использована платформа для проведения международ-

ных соревнований RoboCup 2D Soccer Simulation League. Информация о местоположениях объектов на 

поле является принципиально важной для принятия решения – необходимо определять местоположение 

игроков в условиях как полной, так и недостаточной информации. Использование предыдущих состояний 

и прогнозирование действий для недавно скрывшихся объектов позволяют улучшить точность прогноза 

развития ситуации на поле.  
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Авторы рассмотрели существующие решения по определению местоположения игроков и разработали 

новый алгоритм. При достаточности исходной информации для вычисления координат игрока использу-

ется фильтр Калмана, в условиях недостаточности информации – алгоритм инерциальной навигации, ос-

нованный на известных предыдущих состояниях.  

В статье описан подход к прогнозированию местоположения игроков, которые недавно исчезли из поля 

зрения, рассмотрена математическая модель алгоритма, спроектирована архитектура программного реше-

ния. Разработанное решение проверено на нескольких реальных играх в среде виртуального футбола.  

Результаты представлены в виде графиков математического ожидания и дисперсии и подтверждают воз-

можность прогнозирования местоположения недавно исчезнувших из виду объектов, вычислять коорди-

наты игрока в различных условиях.  

С учетом полученных результатов определены направления дальнейших исследований по прогнозиро-

ванию на основе не только предыдущих состояний, но и логики решений игроков. Следующий шаг – это 

интеграция разработанной программы в систему принятия решений для совместной проверки во время 

соревнований. 

Ключевые слова: интеллектуальные агенты, виртуальный футбол, мультиагентные системы, пози-

ционирование в условиях неопределённости, фильтр Калмана, инерциальная навигация. 
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