ЭЛЕКТРОННЫЙ НАУЧНЫЙ ЖУРНАЛ

ПРОГРАММНЫЕ ПРОДУКТЫ, СИСТЕМЫ И АЛГОРИТМЫ

Добавить статью

Вход Регистрация

Результаты для запроса: персептрон

  1. Использование нейросетевого подхода для сегментации слов в рамках задачи оффлайн-распознавания рукописного текста

    А.С. Басанько Калужский филиал ФГБОУ ВО «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)», Калуга, Россия;
    Ю.С. Белов Калужский филиал ФГБОУ ВО «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)», Калуга, Россия, физико-математических наук;

    Статья была опубликована в выпуске №4 от 8 октября 2018 г.

    Задача оффлайн-распознавания рукописного текста состоит из множества этапов, связанных между собой, так как результаты выполнения каждого этапа являются входными данными для следующего. Один из важных этапов – этап сегментации слова на символы, напрямую влияющий на дальнейший результат классификации. Задача сегментации слова самая сложная в рамках оффлайн-распознавания рукописного текста и на данный момент полностью не решена. Существуют различные подходы для ее решения, однако они довольно сложны в реализации и не обеспечивают качественных результатов.

    В данной статье рассматривается относительно простой подход с применением нейронных сетей, позволяющий достичь хороших показателей сегментации. Идея подхода в том, чтобы с помощью гистограммного метода выделить набор потенциальных точек сегментации, а с помощью обученной нейронной сети оставить только нужные точки сегментации. В статье описываются гистограммный метод для выделения точек сегментации, процесс выделения признаков для обучения нейронной сети, а также алгоритм ее обучения. Приводятся результаты применения данного подхода.