Results for нечеткие множества
-
Гибридные нечеткие когнитивные карты в задачах поддержки принятия решений и прогнозирования
The article was published in issue №4
В настоящей работе предлагается гибридный подход к разработке систем прогнозирования временных рядов, а также поддержки принятия решений, основанный на модулярной архитектуре построения систем прогнозирования, базирующийся на гибридизации нейро-нечеткой нейронной сети ANFIS и нечетких когнитивных картах. С помощью подобной гибридной архитектуры система прогнозирования способна оперировать как качественными данными (субъективными мнениями экспертов), так и количественными (характеристиками исследуемого процесса). В данной работе подробно описан модуль с нечеткой когнитивной картой. Для облегчения задачи настройки весов когнитивной карты использован генетический алгоритм для обучения когнитивной карты, благодаря чему она способна самостоятельно обучиться и производить настройку.
-
Разработка гибридной модели прогнозирования временных характеристик на основе нечетких когнитивных карт и нейро-нечетких сетей в управлении жизненным циклом изделия
The article was published in issue №3
Работа представляет собой исследование в области прогнозирования временных рядов на основе нейросетевых и когнитивных методов для задачи прогнозирования временных характеристик в управлении жизненным циклом изделия. Детально рассматриваются нейро-нечеткие методы прогнозирования, представлен обзор наиболее успешных работ в данной области. Исследуются проблемы в области прогнозирования временных рядов, которые существенным образом влияют на качество прогнозов.
Результатом работы является созданная гибридная модель прогнозирования, сочетающая в себе нейро-нечеткие нейронные сети и нечеткие когнитивные карты, объединенные в систему прогнозирования. Благодаря сочетанию столь разных методов появляется возможность добиться качественного прогнозирования в условиях явлений, когда происходят сильные скачки во временном ряде и одна нейронная сеть не способна выполнять задачу достойным образом.
Планируется апробирование системы для задачи прогнозирования временных характеристик в управлении жизненным циклом изделия.